Gotowa bibliografia na temat „Smoothed functional algorithms”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Smoothed functional algorithms”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Smoothed functional algorithms"
Bhatnagar, Shalabh. "Adaptive Newton-based multivariate smoothed functional algorithms for simulation optimization". ACM Transactions on Modeling and Computer Simulation 18, nr 1 (grudzień 2007): 1–35. http://dx.doi.org/10.1145/1315575.1315577.
Pełny tekst źródłaBhatnagar, Shalabh, i Vivek S. Borkar. "Multiscale Chaotic SPSA and Smoothed Functional Algorithms for Simulation Optimization". SIMULATION 79, nr 10 (październik 2003): 568–80. http://dx.doi.org/10.1177/0037549703039988.
Pełny tekst źródłaGhoshdastidar, Debarghya, Ambedkar Dukkipati i Shalabh Bhatnagar. "Smoothed Functional Algorithms for Stochastic Optimization Using q -Gaussian Distributions". ACM Transactions on Modeling and Computer Simulation 24, nr 3 (2.05.2014): 1–26. http://dx.doi.org/10.1145/2628434.
Pełny tekst źródłaGhoshdastidar, Debarghya, Ambedkar Dukkipati i Shalabh Bhatnagar. "Newton-based stochastic optimization using q-Gaussian smoothed functional algorithms". Automatica 50, nr 10 (październik 2014): 2606–14. http://dx.doi.org/10.1016/j.automatica.2014.08.021.
Pełny tekst źródłaPrasad, H. L., L. A. Prashanth, Shalabh Bhatnagar i Nirmit Desai. "Adaptive Smoothed Functional Algorithms for Optimal Staffing Levels in Service Systems". Service Science 5, nr 1 (marzec 2013): 29–55. http://dx.doi.org/10.1287/serv.1120.0035.
Pełny tekst źródłaLakshmanan, K., i Shalabh Bhatnagar. "Quasi-Newton smoothed functional algorithms for unconstrained and constrained simulation optimization". Computational Optimization and Applications 66, nr 3 (15.09.2016): 533–56. http://dx.doi.org/10.1007/s10589-016-9875-4.
Pełny tekst źródłaNOROUZZADEH, P., B. RAHMANI i M. S. NOROUZZADEH. "FORECASTING SMOOTHED NON-STATIONARY TIME SERIES USING GENETIC ALGORITHMS". International Journal of Modern Physics C 18, nr 06 (czerwiec 2007): 1071–86. http://dx.doi.org/10.1142/s0129183107011133.
Pełny tekst źródłaKostjukov, V. A., M. Y. Medvedev i V. Kh Pshikhopov. "Algorithms for Planning Smoothed Individual Trajectories of Ground Robots". Mekhatronika, Avtomatizatsiya, Upravlenie 23, nr 11 (3.11.2022): 585–95. http://dx.doi.org/10.17587/mau.23.585-595.
Pełny tekst źródłaVijayan, Nithia, i Prashanth L.A. "Smoothed functional-based gradient algorithms for off-policy reinforcement learning: A non-asymptotic viewpoint". Systems & Control Letters 155 (wrzesień 2021): 104988. http://dx.doi.org/10.1016/j.sysconle.2021.104988.
Pełny tekst źródłaCheng, Chuen-Sheng, Pei-Wen Chen i Yu-Tang Wu. "Phase I Analysis of Nonlinear Profiles Using Anomaly Detection Techniques". Applied Sciences 13, nr 4 (7.02.2023): 2147. http://dx.doi.org/10.3390/app13042147.
Pełny tekst źródłaRozprawy doktorskie na temat "Smoothed functional algorithms"
Sällberg, Gustav, i Pontus Söderbäck. "Thesis - Optimizing Smooth Local Volatility Surfaces with Power Utility Functions". Thesis, Linköpings universitet, Produktionsekonomi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120090.
Pełny tekst źródłaBarajas, Leandro G. "Process Control in High-Noise Environments Using A Limited Number Of Measurements". Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/7741.
Pełny tekst źródłaVestin, Albin, i Gustav Strandberg. "Evaluation of Target Tracking Using Multiple Sensors and Non-Causal Algorithms". Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160020.
Pełny tekst źródłaLakshmanan, K. "Online Learning and Simulation Based Algorithms for Stochastic Optimization". Thesis, 2012. http://hdl.handle.net/2005/3245.
Pełny tekst źródłaKsiążki na temat "Smoothed functional algorithms"
Moerder, Daniel D. Constrained minimization of smooth functions using a genetic algorithm. Hampton: National Aeronautics and Space Administration, Langley Research Center, 1994.
Znajdź pełny tekst źródłaN, Pamadi Bandu, i Langley Research Center, red. Constrained minimization of smooth functions using a genetic algorithm. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Znajdź pełny tekst źródłaFitting Smooth Functions to Data. American Mathematical Society, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Smoothed functional algorithms"
Bhatnagar, S., H. Prasad i L. Prashanth. "Smoothed Functional Gradient Schemes". W Stochastic Recursive Algorithms for Optimization, 77–102. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4285-0_6.
Pełny tekst źródłaBhatnagar, S., H. Prasad i L. Prashanth. "Newton-Based Smoothed Functional Algorithms". W Stochastic Recursive Algorithms for Optimization, 133–48. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4285-0_8.
Pełny tekst źródłaLakshmanan, K., i Shalabh Bhatnagar. "Smoothed Functional and Quasi-Newton Algorithms for Routing in Multi-stage Queueing Network with Constraints". W Distributed Computing and Internet Technology, 175–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19056-8_12.
Pełny tekst źródłaBläser, Markus, Bodo Manthey i B. V. Raghavendra Rao. "Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals". W Lecture Notes in Computer Science, 110–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22300-6_10.
Pełny tekst źródłaJ. Zaslavski, Alexander. "Gradient Algorithm with a Smooth Objective Function". W Convex Optimization with Computational Errors, 127–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37822-6_4.
Pełny tekst źródłaZaslavski, Alexander J. "Gradient Algorithm with a Smooth Objective Function". W Springer Optimization and Its Applications, 59–72. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30921-7_4.
Pełny tekst źródłaMok, RenHao, i Mohd Ashraf Ahmad. "Power Production Optimization of Model-Free Wind Farm Using Smoothed Functional Algorithm". W Lecture Notes in Electrical Engineering, 679–89. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8690-0_60.
Pełny tekst źródłaGiesl, Peter. "Towards Calculating the Basin of Attraction of Non-Smooth Dynamical Systems Using Radial Basis Functions". W Approximation Algorithms for Complex Systems, 205–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16876-5_9.
Pełny tekst źródłaCruttwell, Geoffrey S. H., Bruno Gavranović, Neil Ghani, Paul Wilson i Fabio Zanasi. "Categorical Foundations of Gradient-Based Learning". W Programming Languages and Systems, 1–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99336-8_1.
Pełny tekst źródłaBredies, Kristian. "Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty". W Efficient Algorithms for Global Optimization Methods in Computer Vision, 44–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54774-4_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Smoothed functional algorithms"
Ghoshdastidar, Debarghya, Ambedkar Dukkipati i Shalabh Bhatnagar. "q-Gaussian based Smoothed Functional algorithms for stochastic optimization". W 2012 IEEE International Symposium on Information Theory - ISIT. IEEE, 2012. http://dx.doi.org/10.1109/isit.2012.6283013.
Pełny tekst źródłaSegeth, Karel. "Multivariate smooth interpolation that employs polyharmonic functions". W Programs and Algorithms of Numerical Mathematics 19. Institute of Mathematics, Czech Academy of Sciences, 2019. http://dx.doi.org/10.21136/panm.2018.15.
Pełny tekst źródłaKhamisov, O. V. "Optimization with quadratic support functions in nonconvex smooth optimization". W NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA–2016): Proceedings of the 2nd International Conference “Numerical Computations: Theory and Algorithms”. Author(s), 2016. http://dx.doi.org/10.1063/1.4965331.
Pełny tekst źródłaMohanty, Amit, i Bin Yao. "Indirect Adaptive Robust Control of Uncertain Systems With Unknown Asymmetric Input Deadband Using a Smooth Inverse". W ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2771.
Pełny tekst źródłaJuan Geng, Lai-Sheng Wang, Ai-Min Fu i Qi-Qing Song. "A smoothed rank function algorithm based Hyperbolic Tangent function for matrix completion". W 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6359558.
Pełny tekst źródłaZhifu Cui, Hang Zhang i Wei Lu. "An improved smoothed l0-norm algorithm based on multiparameter approximation function". W 2010 12th IEEE International Conference on Communication Technology (ICCT). IEEE, 2010. http://dx.doi.org/10.1109/icct.2010.5688553.
Pełny tekst źródłaShadloo, Mostafa Safdari, Amir Zainali i Mehmet Yildiz. "Fluid-Structure Interaction Simulation by Smoothed Particle Hydrodynamics". W ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31137.
Pełny tekst źródłaBorup, Liana, i Alan Parkinson. "Comparison of Four Non-Derivative Optimization Methods on Two Problems Containing Heuristic and Analytic Knowledge". W ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0114.
Pełny tekst źródłaVenkataraman, P. "Determining the Ordinary Differential Equation From Noisy Data". W ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47658.
Pełny tekst źródłaXiao, Yichi, Zhe Li, Tianbao Yang i Lijun Zhang. "SVD-free Convex-Concave Approaches for Nuclear Norm Regularization". W Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/436.
Pełny tekst źródła