Gotowa bibliografia na temat „Smash product”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Smash product”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Smash product"
任, 北上. "Duality between the Smash Product and Smash Coproduct". Advances in Applied Mathematics 06, nr 09 (2017): 1105–14. http://dx.doi.org/10.12677/aam.2017.69134.
Pełny tekst źródłaCinar, Ismet, Ozgur Ege i Ismet Karaca. "The digital smash product". Electronic Research Archive 28, nr 1 (2020): 459–69. http://dx.doi.org/10.3934/era.2020026.
Pełny tekst źródłaGuo, Shuangjian, Xiaohui Zhang, Yuanyuan Ke i Yizheng Li. "Enveloping actions and duality theorems for partial twisted smash products". Filomat 34, nr 10 (2020): 3217–27. http://dx.doi.org/10.2298/fil2010217g.
Pełny tekst źródłaLYDAKIS, MANOS. "Smash products and Γ-spaces". Mathematical Proceedings of the Cambridge Philosophical Society 126, nr 2 (marzec 1999): 311–28. http://dx.doi.org/10.1017/s0305004198003260.
Pełny tekst źródłaMa, Tianshui, Haiying Li i Tao Yang. "Cobraided smash product Hom-Hopf algebras". Colloquium Mathematicum 134, nr 1 (2014): 75–92. http://dx.doi.org/10.4064/cm134-1-3.
Pełny tekst źródłaKAN, HAIBIN. "THE GENERALIZED SMASH PRODUCT AND COPRODUCT". Chinese Annals of Mathematics 21, nr 03 (lipiec 2000): 381–88. http://dx.doi.org/10.1142/s0252959900000406.
Pełny tekst źródłaJia, Ling, i Fang Li. "Global dimension of weak smash product". Journal of Zhejiang University-SCIENCE A 7, nr 12 (grudzień 2006): 2088–92. http://dx.doi.org/10.1631/jzus.2006.a2088.
Pełny tekst źródłaMu, Qiang. "Smash product construction of modular lattice vertex algebras". Electronic Research Archive 30, nr 1 (2021): 204–20. http://dx.doi.org/10.3934/era.2022011.
Pełny tekst źródłaNasution, Usman, Muhammad Yan Ahady, Vivi Pratiwi, Fatimah Zahrah Albanjari, Elvita Sari Br Tarigan i Xyena Tesalonika Br Siregar. "Smash Skills In Table Tennis Games". QISTINA: Jurnal Multidisiplin Indonesia 3, nr 1 (1.06.2024): 685–88. http://dx.doi.org/10.57235/qistina.v3i1.2376.
Pełny tekst źródłaWANG, DINGGUO, i YUANYUAN KE. "THE CALABI–YAU PROPERTY OF TWISTED SMASH PRODUCTS". Journal of Algebra and Its Applications 13, nr 03 (31.10.2013): 1350118. http://dx.doi.org/10.1142/s0219498813501181.
Pełny tekst źródłaRozprawy doktorskie na temat "Smash product"
Almoosawi, Somar. "Product Related Research Regarding Small and Medium Sized Enterprises, in Hong Kong and South China, Environmental Management Systems". Thesis, Linköping : Linköping University. Institute of Technology, 2008. http://www.diva-portal.org/smash/get/diva2:114196/FULLTEXT01.
Pełny tekst źródłaGouthier, Bianca. "Actions rationnelles de schémas en groupes infinitésimaux". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0123.
Pełny tekst źródłaThis thesis focuses on the study of (rational) actions of infinitesimal group schemes, with a particular emphasis on infinitesimal commutative unipotent group schemes and generically free actions and faithful actions. For any finite k-group scheme G acting rationally on a k-variety X, if the action is generically free then the dimension of Lie(G) is upper bounded by the dimension of the variety. We show that this is the only obstruction when k is a perfect field of positive characteristic and G is infinitesimal commutative trigonalizable. If G is unipotent, we also show that any generically free rational action on X of (any power of) the Frobenius kernel of G extends to a generically free rational action of G on X. Moreover, we give necessary conditions to have faithful rational actions of infinitesimal commutative trigonalizable group schemes on varieties, and (different) sufficient conditions in the unipotent case over a perfect field. Studying faithful group scheme actions on a variety X yields information on representable subgroups of the automorphism group functor AutX of X. For any field k, PGL2,k represents the automorphism group functor of P1 k and thus subgroup schemes of PGL2,k correspond to faithful actions on P1 k. Moreover, PGL2,k(k) coincides with the Cremona group in dimension one, i.e. birational self-maps of P1 k, since any rational self-map of a projective non-singular curve extends to the whole curve. In positive characteristic, the situation is completely different if we consider rational actions of infinitesimal group schemes. Most of the faithful infinitesimal actions on the affine line do not extend to P1 k. If the characteristic of a field k is odd, any infinitesimal subgroup scheme of PGL2,k lifts to SL2,k. This is not true in characteristic 2 and, in this case, we give a complete description, up to isomorphism, of infinitesimal unipotent subgroup schemes of PGL2,k. Finally, we prove a result that gives an explicit description of all infinitesimal commutative unipotent k-group schemes with one-dimensional Lie algebra defined over an algebraically closed field k, showing that there are exactly n non-isomorphic such group schemes of fixed order pn
Young, Christopher. "The Depth of a Hopf algebra in its Smash Product". Doctoral thesis, 2014. https://repositorio-aberto.up.pt/handle/10216/102331.
Pełny tekst źródłaYoung, Christopher. "The Depth of a Hopf algebra in its Smash Product". Tese, 2014. https://repositorio-aberto.up.pt/handle/10216/102331.
Pełny tekst źródłaShakalli, Tang Jeanette. "Deformations of Quantum Symmetric Algebras Extended by Groups". Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10855.
Pełny tekst źródłaWelsh, Charles Clymer. "Some results in crossed products and lie algebra smash products". 1990. http://catalog.hathitrust.org/api/volumes/oclc/22425708.html.
Pełny tekst źródłaKsiążki na temat "Smash product"
Conference on Hopf Algebras and Tensor Categories (2011 University of Almeria). Hopf algebras and tensor categories: International conference, July 4-8, 2011, University of Almería, Almería, Spain. Redaktorzy Andruskiewitsch Nicolás 1958-, Cuadra Juan 1975- i Torrecillas B. (Blas) 1958-. Providence, Rhode Island: American Mathematical Society, 2013.
Znajdź pełny tekst źródłaBruner, R. R. H. Springer, 1986.
Znajdź pełny tekst źródłaPartial Dynamical Systems, Fell Bundles and Applications. American Mathematical Society, 2017.
Znajdź pełny tekst źródłaCzęści książek na temat "Smash product"
Yan, Yan, i Lihui Zhou. "Separability Extension of Right Twisted Weak Smash Product". W Advances in Intelligent and Soft Computing, 103–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14880-4_12.
Pełny tekst źródłaNgompé, Arnaud Ngopnang. "Homeomorphic Model for the Polyhedral Smash Product of Disks and Spheres". W Toric Topology and Polyhedral Products, 253–75. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57204-3_13.
Pełny tekst źródłaYan, Yan, Nan Ji, Lihui Zhou i Qiuna Zhang. "Some Properties of a Right Twisted Smash Product A*H over Weak Hopf Algebras". W Communications in Computer and Information Science, 101–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16336-4_14.
Pełny tekst źródłaNastasescu, Constantin, i Freddy Van Oystaeyen. "7. Smash Products". W Methods of Graded Rings, 187–221. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40998-4_7.
Pełny tekst źródłaJardine, J. F. "Smash products of spectra". W Generalized Etale Cohomology Theories, 1–29. Basel: Springer Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-0066-2_1.
Pełny tekst źródłaLewis, L. G., J. P. May i M. Steinberger. "Twisted half smash products and extended powers". W Lecture Notes in Mathematics, 299–349. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075785.
Pełny tekst źródłaShaoxue, Liu, i Fred Oystaeyen. "Group Graded Rings, Smash Products and Additive Categories". W Perspectives in Ring Theory, 299–310. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2985-2_26.
Pełny tekst źródłaLewis, L. G., i J. P. May. "Change of universe, smash products, and change of groups". W Lecture Notes in Mathematics, 54–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075781.
Pełny tekst źródłaDoi, Yukio. "Generalized Smash Products and Morita Contexts for Arbitrary Hopf Algebras". W Advances in Hopf Algebras, 39–53. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003419792-3.
Pełny tekst źródłaIlankovan, Velupillai, i Tian Ee Seah. "Surgical Facelift". W Oral and Maxillofacial Surgery for the Clinician, 759–73. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-1346-6_37.
Pełny tekst źródłaStreszczenia konferencji na temat "Smash product"
Hadzihasanovic, Amar. "The Smash Product of Monoidal Theories". W 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2021. http://dx.doi.org/10.1109/lics52264.2021.9470575.
Pełny tekst źródłaZhao Lihui. "Generalized L-R smash products and diagonal crossed products of multiplier Hopf algebras". W 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002679.
Pełny tekst źródłaKonh, Bardia. "Finite Element Studies of Triple Actuation of Shape Memory Alloy Wires for Surgical Tools". W 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6857.
Pełny tekst źródłaMontagnoli, Andre, Marcus L. Young, Christoph Somsen, Jan A. Frenzel, F. Tad Calkins i Douglas E. Nicholson. "Processing and Thermomechanical Stability of Low Hysteresis Shape Memory Alloys". W SMST 2024. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.smst2024p0117.
Pełny tekst źródłaDe Nardi, Alice, Andrea Marinelli, Flavia Papile i Andrea Cadelli. "Hoyo – Shape Memory Alloys enable a new way to approach the treatment of the Autism Spectrum Disorder". W Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe100943.
Pełny tekst źródłaKilic, Ugur, Muhammad M. Sherif, Sherif M. Daghash i Osman E. Ozbulut. "Full-Field Deformation and Thermal Characterization of GNP/Epoxy and GNP/SMA Fiber/Epoxy Composites". W ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5640.
Pełny tekst źródłaShaw, John A., Antoine Gremillet i David S. Grummon. "The Manufacture of NiTi Foams". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39028.
Pełny tekst źródłaSong, Di, Guozheng Kang, Qianhua Kan i Chao Yu. "Observations on the Residual Martensite Phase of NiTi Shape Memory Alloy Micro-Tubes Under Uniaxial and Multiaxial Fatigue-Loadings". W ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65478.
Pełny tekst źródłaWorrell, Dominique, Faith Gantz, Linden Bolisay, Art Palisoc i Marcus L. Young. "Shape Memory Alloy Design for a Lightweight and Low Stow Volume Expandable Solar Concentrator". W SMST 2024. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.smst2024p0115.
Pełny tekst źródłaHoffmann, Fabian, Robin Roj, Ralf Theiß i Peter Dültgen. "Development of Shape Memory-Based Elastic-Adaptive Damping Elements for Sport and Rehabilitation Equipment". W ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2255.
Pełny tekst źródła