Gotowa bibliografia na temat „Small strain dynamic properties”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Small strain dynamic properties”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Small strain dynamic properties"
Sas, Wojciech, Katarzyna Gabryś, Emil Soból i Alojzy Szymański. "Nonlinear dynamic properties of silty clay from Warsaw area". Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation 48, nr 3 (1.09.2016): 201–20. http://dx.doi.org/10.1515/sggw-2016-0016.
Pełny tekst źródłaSong, Binghui, Angelos Tsinaris, Anastasios Anastasiadis, Kyriazis Pitilakis i Wenwu Chen. "Small to medium strain dynamic properties of Lanzhou loess, China". Soil Dynamics and Earthquake Engineering 163 (grudzień 2022): 107454. http://dx.doi.org/10.1016/j.soildyn.2022.107454.
Pełny tekst źródłaKyei-Manu, William Amoako, Charles R. Herd, Mahatab Chowdhury, James J. C. Busfield i Lewis B. Tunnicliffe. "The Influence of Colloidal Properties of Carbon Black on Static and Dynamic Mechanical Properties of Natural Rubber". Polymers 14, nr 6 (16.03.2022): 1194. http://dx.doi.org/10.3390/polym14061194.
Pełny tekst źródłaKREN, Alexander P. "IMPACT INDENTATION OF METALS AT THE SMALL ELASTOPLASTIC STRAIN". Mechanics of Machines, Mechanisms and Materials 1, nr 58 (marzec 2022): 56–63. http://dx.doi.org/10.46864/1995-0470-2022-1-58-56-63.
Pełny tekst źródłaJafarian, Yaser, i Hamed Javdanian. "Small-strain dynamic properties of siliceous-carbonate sand under stress anisotropy". Soil Dynamics and Earthquake Engineering 131 (kwiecień 2020): 106045. http://dx.doi.org/10.1016/j.soildyn.2020.106045.
Pełny tekst źródłaLei, Xudong, Kailu Xiao, Xianqian Wu i Chenguang Huang. "Dynamic Mechanical Properties of Several High-Performance Single Fibers". Materials 14, nr 13 (25.06.2021): 3574. http://dx.doi.org/10.3390/ma14133574.
Pełny tekst źródłaGao, Shuling, i Guanhua Hu. "Experimental Study on Biaxial Dynamic Compressive Properties of ECC". Materials 14, nr 5 (6.03.2021): 1257. http://dx.doi.org/10.3390/ma14051257.
Pełny tekst źródłaDeng, Ji Wei, Chang Wu Liu i Jian Feng Liu. "Effect of Dynamic Loading on Mechanical Properties of Concrete". Advanced Materials Research 568 (wrzesień 2012): 147–53. http://dx.doi.org/10.4028/www.scientific.net/amr.568.147.
Pełny tekst źródłaYang, Jie, Xin Cai, Yangong Shan, Miaomiao Yang, Xingwen Guo i Jinlei Zhao. "Small-Strain Dynamic Properties of Lean Cemented Sand and Gravel Materials under Different Cementing Agent Contents". Advances in Civil Engineering 2020 (24.11.2020): 1–13. http://dx.doi.org/10.1155/2020/8878506.
Pełny tekst źródłaKang, Gyeong-o., Woong Choi i Changho Lee. "Prediction of Small-Strain Dynamic Properties on Granulated Spherical Glass Bead-Polyurethane Mixtures". Advances in Civil Engineering 2019 (12.09.2019): 1–12. http://dx.doi.org/10.1155/2019/6348326.
Pełny tekst źródłaRozprawy doktorskie na temat "Small strain dynamic properties"
Beyerlein, Kenneth Roy. "Simulation and Modeling of the Powder Diffraction Pattern from Nanoparticles: Studying the Effects of Faulting in Small Crystallites". Doctoral thesis, Università degli studi di Trento, 2011. https://hdl.handle.net/11572/368693.
Pełny tekst źródłaVenables, R. "Dynamic strain ageing and the fatigue behaviour of nimonic 901". Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376646.
Pełny tekst źródłaVoorhies, Katherine Desiree. "Static and Dynamic Stress/Strain Properties for Human and Porcine Eyes". Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/31867.
Pełny tekst źródłaMaster of Science
Wang, J., S. Dong, Ashraf F. Ashour, X. Wang i B. Han. "Dynamic mechanical properties of cementitious composites with carbon nanotubes". Elsevier, 2019. http://hdl.handle.net/10454/17465.
Pełny tekst źródłaThis paper studied the effect of different types of multi-walled carbon nanotubes (MWCNTs) on the dynamic mechanical properties of cementitious composites. Impact compression test was conducted on various specimens to obtain the dynamic stress-strain curves and dynamic compressive strength as well as deformation of cementitious composites. The dynamic impact toughness and impact dissipation energy were, then, estimated. Furthermore, the microscopic morphology of cementitious composites was identified by using the scanning electron microscope to show the reinforcing mechanisms of MWCNTs on cementitious composites. Experimental results show that all types of MWCNTs can increase the dynamic compressive strength and ultimate strain of the composite, but the dynamic peak strain of the composite presents deviations with the MWCNT incorporation. The composite with thick-short MWCNTs has a 100.8% increase in the impact toughness, and the composite with thin-long MWCNTs presents an increased dissipation energy up to 93.8%. MWCNTs with special structure or coating treatment have higher reinforcing effect to strength of the composite against untreated MWCNTs. The modifying mechanisms of MWCNTs on cementitious composite are mainly attributed to their nucleation and bridging effects, which prevent the micro-crack generation and delay the macro-crack propagation through increasing the energy consumption.
Lo, Kai Fung. "Small-strain shear modulus and damping ratio determination by bender element /". View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20LOK.
Pełny tekst źródłaKemper, Andrew Robb. "Material Properties of Human Rib Cortical Bone from Dynamic Tension Coupon Testing". Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/43709.
Pełny tekst źródłaMaster of Science
Kates, Gina L. "Development and implementation of a seismic flat dilatometer test for small-and high-strain soil properties". Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/20234.
Pełny tekst źródłaBisplinghoff, Jill Aliza. "Biomechanical Response of the Human Eye to Dynamic Loading". Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/31880.
Pełny tekst źródła
The purpose of this thesis is to characterize the biomechanical response of the human eye to dynamic loading. A number of test series were conducted with different loading conditions to gather data. A drop tower pressurization system was used to dynamically increase intraocular pressure until rupture. Results for rupture pressure, stress and strain were reported. Water streams that varied in diameter and velocity were developed using a customized pressure system to impact eyes. Intraocular pressure, normalized energy and eye injury risk were reported. A Facial and Ocular Countermeasure Safety (FOCUS) headform was used to measure the force applied to a synthetic eye during each hit from projectile shooting toys. The risk of eye injury for each impact was reported. These data provide new and significant research to the field of eye injury biomechanics to further the understanding of eye injury thresholds.
Master of Science
Almaari, Firas, i Essam Aljbban. "Strain Rate Effect on Fracture Mechanical Properties of Ferritic-Pearlitic Ductile Iron". Thesis, Linnéuniversitetet, Institutionen för byggteknik (BY), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-78858.
Pełny tekst źródłaSears, Nicholas C. "Investigations into the Quasi-Static and Dynamic Properties of Flexible Hybrid Electronic Material Systems". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1525278328687427.
Pełny tekst źródłaKsiążki na temat "Small strain dynamic properties"
Antos, R., i Y. Otani. The dynamics of magnetic vortices and skyrmions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0022.
Pełny tekst źródłaWhite, Robert, i Mark Krstic. Healthy Soils for Healthy Vines. CSIRO Publishing, 2019. http://dx.doi.org/10.1071/9781486307395.
Pełny tekst źródłaWebb, Andrew. Colloids in critical illness. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0056.
Pełny tekst źródłaRomagnoli, Stefano, i Giovanni Zagli. Blood pressure monitoring in the ICU. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0131.
Pełny tekst źródłaCzęści książek na temat "Small strain dynamic properties"
Song, Binghui, Angelos Tsinaris, Anastasios Anastasiadis, Kyriazis Pitilakis i Wenwu Chen. "Small to Medium Strain Dynamic Properties of Lanzhou Loess". W Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 2141–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_197.
Pełny tekst źródłaChiaro, Gabriele, Ali Tasalloti, Alessandro Palermo i Laura Banasiak. "Small-Strain Shear Stiffness and Strain-Dependent Dynamic Properties of Gravel-Rubber Mixtures". W Lecture Notes in Civil Engineering, 467–77. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1579-8_36.
Pełny tekst źródłaKhan, K. A., Sukanta Das i B. K. Maheshwari. "Effect of Degree of Saturation on Dynamic Properties of Solani Sand in Small Strain". W Lecture Notes in Civil Engineering, 223–31. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6564-3_20.
Pełny tekst źródłaMiralbes, R., D. Ranz i D. Zouzias. "Study of the Use of Sawdust and Mycelium Composite as a Substitute of EPS". W Lecture Notes in Mechanical Engineering, 67–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70566-4_12.
Pełny tekst źródłaTsuji, Nobuhiro, Shigenobu Ogata, Haruyuki Inui, Isao Tanaka i Kyosuke Kishida. "Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals". W The Plaston Concept, 3–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7715-1_1.
Pełny tekst źródłaPelleg, Joshua. "Dynamic Deformation—The Effect of Strain Rate". W Mechanical Properties of Nanomaterials, 181–255. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74652-0_6.
Pełny tekst źródłaFei, Kang, Jinxin Xu, Jian Qian i Wei Hong. "Strain dependent dynamic properties of clay–gravel mixtures". W Advances in Energy Science and Equipment Engineering II, 1203–10. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315116174-69.
Pełny tekst źródłaChiu, Y. W., X. H. Zhang, H. Hao i N. Salter. "Dynamic Tensile Properties of Clay Brick at High Strain Rates". W Lecture Notes in Civil Engineering, 677–85. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8079-6_64.
Pełny tekst źródłaWang, Yingchun, Shukui Li i Jinxu Liu. "Strain rate-dependent and temperature- dependent compressive properties of 2DCf/SiC Composite". W Dynamic Behavior of Materials, Volume 1, 287–94. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8228-5_41.
Pełny tekst źródłaOtt, Kyle A., R. S. Armiger, A. C. Wickwire, A. S. Iwaskiw i Andrew C. Merkle. "Determination of Simple Shear Material Properties of the Brain at High Strain Rates". W Dynamic Behavior of Materials, Volume 1, 139–47. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4238-7_18.
Pełny tekst źródłaStreszczenia konferencji na temat "Small strain dynamic properties"
Ajmera, Beena, Binod Tiwari i Quoc-Hung Phan. "Small Strain Dynamic Properties of Silt-Clay Mixtures". W Geo-Congress 2020. Reston, VA: American Society of Civil Engineers, 2020. http://dx.doi.org/10.1061/9780784482810.021.
Pełny tekst źródłaBonifasi-Lista, Carlos, Spencer P. Lake, Michael S. Small i Jeffrey A. Weiss. "Viscoelastic Properties of Human MCL in the Transverse Direction". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32621.
Pełny tekst źródłaShilo, Doron, Amir Mendelovich i Haika Drezner. "Electromechanical Response of Large Strain Ferroelectric Actuators". W ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59107.
Pełny tekst źródłaValle, Celestino, Beatriz I. Camacho, Kenneth H. Stokoe i Alan F. Rauch. "Comparison of the Dynamic Properties and Undrained Shear Strengths of Offshore Calcareous Sand and Artificially Cemented Sand". W ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2003. http://dx.doi.org/10.1115/omae2003-37091.
Pełny tekst źródłaValle, Celestino, i Kenneth H. Stokoe. "Laboratory Measurements of the Dynamic Properties of Intact and Remolded Offshore Clays From Campeche Bay". W ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2003. http://dx.doi.org/10.1115/omae2003-37248.
Pełny tekst źródłaMcClure, Michael J., Scott A. Sell i Gary L. Bowlin. "Multi Layered Polycaprolactone-Elastin-Collagen Small Diameter Conduits for Vascular Tissue Engineering". W ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192895.
Pełny tekst źródłaDarvish, Kurosh, Erik G. Takhounts i Jeff R. Crandall. "A Dynamic Method to Develop Nonlinear Viscoelastic Model of Brain Tissue". W ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0122.
Pełny tekst źródłaTang, Weihan, Seunghun Baek i Bogdan I. Epureanu. "Reduced Order Models for Blisks With Small and Large Mistuning and Friction Dampers". W ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57850.
Pełny tekst źródłaDaghash, Sherif, Osman E. Ozbulut i Muhammad M. Sherif. "Shape Memory Alloy Cables for Civil Infrastructure Systems". W ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7562.
Pełny tekst źródłaLall, Pradeep, Di Zhang i Vikas Yadav. "High Strain-Rate Constitutive Behavior of SAC305 Solder During Operation at High Temperature". W ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39518.
Pełny tekst źródłaRaporty organizacyjne na temat "Small strain dynamic properties"
Murray, Matthew, Trace Thornton, Stephen Rowell i Clifford Grey. Dynamic material properties of Grade 50 steel : effects of high strain rates on ASTM A992 and A572 Grade 50 steels. Engineer Research and Development Center (U.S.), sierpień 2023. http://dx.doi.org/10.21079/11681/47445.
Pełny tekst źródłaSubramanian, K. H. Test Plan to Update SRS High Level Waste Tank Material Properties Database by Determining Synergistic Effects of Dynamic Strain Aging and Stress Corrosion Cracking. Office of Scientific and Technical Information (OSTI), marzec 2002. http://dx.doi.org/10.2172/799694.
Pełny tekst źródłaChristman. L51577 Prediction of SCC Susceptibility Based on Mechanical Properties of Line Pipe Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 1988. http://dx.doi.org/10.55274/r0010278.
Pełny tekst źródłaUpadhyaya, Shrini, Dan Wolf, William J. Chancellor, Itzhak Shmulevich i Amos Hadas. Traction-Soil Compaction Tradeoffs as a Function of Dynamic Soil-Tire Interation Due to Varying Soil and Loading Conditions. United States Department of Agriculture, październik 1995. http://dx.doi.org/10.32747/1995.7612832.bard.
Pełny tekst źródłaGroeneveld, Andrew, i C. Crane. Advanced cementitious materials for blast protection. Engineer Research and Development Center (U.S.), kwiecień 2023. http://dx.doi.org/10.21079/11681/46893.
Pełny tekst źródłaTyson. L52337 Weld Design Testing and Assessment Procedures for High Strength Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 2011. http://dx.doi.org/10.55274/r0010448.
Pełny tekst źródłaMichalopoulos, C. D. PR-175-420-R01 Submarine Pipeline Analysis - Theoretical Manual. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 1985. http://dx.doi.org/10.55274/r0012171.
Pełny tekst źródłaSnyder, Victor A., Dani Or, Amos Hadas i S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, kwiecień 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Pełny tekst źródłaMoghtadernejad, Sara, Ehsan Barjasteh, Ren Nagata i Haia Malabeh. Enhancement of Asphalt Performance by Graphene-Based Bitumen Nanocomposites. Mineta Transportation Institute, czerwiec 2021. http://dx.doi.org/10.31979/mti.2021.1918.
Pełny tekst źródłaLeveque, E., M. Zarea, R. Batisse i P. Roovers. IPC-BST-R01 Burst Strength of Gouges in Low Toughness Gas Transmission Pipes. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 2006. http://dx.doi.org/10.55274/r0011781.
Pełny tekst źródła