Artykuły w czasopismach na temat „Small-angle light scattering”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Small-angle light scattering.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Small-angle light scattering”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Kuščer, Ivan. "Multiple small-angle scattering of light". Progress in Nuclear Energy 34, nr 4 (styczeń 1999): 355–59. http://dx.doi.org/10.1016/s0149-1970(98)00016-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ng, T. W. "Scattering-angle calibration in an automated small-angle light-scattering apparatus". Journal of Applied Polymer Science 62, nr 4 (24.10.1996): 617–19. http://dx.doi.org/10.1002/(sici)1097-4628(19961024)62:4<617::aid-app4>3.0.co;2-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wu, Hua, Jianjun Xie, Marco Lattuada i Massimo Morbidelli. "Scattering Structure Factor of Colloidal Gels Characterized by Static Light Scattering, Small-Angle Light Scattering, and Small-Angle Neutron Scattering Measurements". Langmuir 21, nr 8 (kwiecień 2005): 3291–95. http://dx.doi.org/10.1021/la047403n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Priore, Brian E., i Lynn M. Walker. "Coalescence analysis through small-angle light scattering". AIChE Journal 47, nr 12 (grudzień 2001): 2644–52. http://dx.doi.org/10.1002/aic.690471204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Holoubek, Jaroslav, Čestmír Koňák i Petr Štěpánek. "Time-Resolved Small-Angle Light Scattering Apparatus". Particle & Particle Systems Characterization 16, nr 3 (sierpień 1999): 102–5. http://dx.doi.org/10.1002/(sici)1521-4117(199908)16:3<102::aid-ppsc102>3.0.co;2-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Champion, J. V., A. Killey i G. H. Meeten. "Small-angle polarized light scattering by spherulites". Journal of Polymer Science: Polymer Physics Edition 23, nr 7 (lipiec 1985): 1467–76. http://dx.doi.org/10.1002/pol.1985.180230709.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Asnaghi, Daniela, Marina Carpineti, Marzio Giglio i Alberto Vailati. "Small angle light scattering studies concerning aggregation processes". Current Opinion in Colloid & Interface Science 2, nr 3 (czerwiec 1997): 246–50. http://dx.doi.org/10.1016/s1359-0294(97)80031-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Chen, Tuan W. "Eikonal Approximation Method for Small-angle Light Scattering". Journal of Modern Optics 35, nr 4 (kwiecień 1988): 743–52. http://dx.doi.org/10.1080/09500348814550771.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Thill, A., S. Désert i M. Delsanti. "Small angle static light scattering: absolute intensity measurements". European Physical Journal Applied Physics 17, nr 3 (marzec 2002): 201–8. http://dx.doi.org/10.1051/epjap:2002013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ding, J., i Y. Yang. "Small Angle Light Scattering from Bipolar Nematic Droplets". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 257, nr 1 (grudzień 1994): 63–87. http://dx.doi.org/10.1080/10587259408033765.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Ding, Jiandong, i Yuliang Yang. "Small Angle Light Scattering from Axial Nematic Droplets". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 238, nr 1 (styczeń 1994): 47–60. http://dx.doi.org/10.1080/10587259408046915.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Koyuncu, B., i J. C. Earnshaw. "Semi-automatic determination of scattering vector in small-angle light scattering". Journal of Physics E: Scientific Instruments 18, nr 10 (październik 1985): 830–33. http://dx.doi.org/10.1088/0022-3735/18/10/006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Allen, A. J., P. R. Jemian, D. R. Black, H. E. Burdette, R. D. Spal, S. Krueger i G. G. Long. "Ultra-small-angle X-ray scattering to bridge the gap between visible light scattering and standard small-angle scattering cameras". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 347, nr 1-3 (sierpień 1994): 487–90. http://dx.doi.org/10.1016/0168-9002(94)91933-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Montagna, G., M. Moretti, O. Nicrosini, A. Pallavicini i F. Piccinini. "Light pair correction to Bhabha scattering at small angle". Nuclear Physics B 547, nr 1-2 (maj 1999): 39–59. http://dx.doi.org/10.1016/s0550-3213(99)00064-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Gilbert, P. H., i A. J. Giacomin. "Small-angle light scattering in large-amplitude oscillatory shear". Physics of Fluids 31, nr 10 (1.10.2019): 103104. http://dx.doi.org/10.1063/1.5121632.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Meeten, G. H., i P. Navard. "Cholesteric hydroxypropylcellulose solutions: Microscopy and small-angle light scattering". Journal of Polymer Science Part B: Polymer Physics 26, nr 2 (luty 1988): 413–19. http://dx.doi.org/10.1002/polb.1988.090260214.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Ravey, Jean-Claude. "Small Angle Light Scattering Patterns from Micrometer-Sized Spheroids". Particle & Particle Systems Characterization 4, nr 1-4 (1987): 134–40. http://dx.doi.org/10.1002/ppsc.19870040128.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Beebe, E. V., R. L. Coalson i R. H. Marchessault. "Characterization of cellulose gels by small angle light scattering". Journal of Polymer Science Part C: Polymer Symposia 13, nr 1 (7.03.2007): 103–22. http://dx.doi.org/10.1002/polc.5070130109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Gałeski, A., T. Pakuła i M. Kryszewski. "Small-angle light scattering (SALS) from helically twisted fibers". Journal of Polymer Science: Polymer Symposia 61, nr 1 (8.03.2007): 35–44. http://dx.doi.org/10.1002/polc.5070610106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

CZLONKOWSKA-KOHUTNICKA, ZOFIA, TADEUSZ LIPOWIECKI i IRENA DANIEWSKA. "Diffractometer for small-angle laser light scattering (SALLS) measurements". Polimery 37, nr 11/12 (listopad 1992): 520–22. http://dx.doi.org/10.14314/polimery.1992.520.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

L�uger, J�rg, i Wolfram Gronski. "A melt rheometer with integrated small angle light scattering". Rheologica Acta 34, nr 1 (1995): 70–79. http://dx.doi.org/10.1007/bf00396055.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Borsali, Redouane, Marguerite Rinaudo i Laurence Noirez. "Light Scattering and Small-Angle Neutron Scattering from Polyelectrolyte Solutions: The Succinoglycan". Macromolecules 28, nr 4 (lipiec 1995): 1085–88. http://dx.doi.org/10.1021/ma00108a040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Wilcox, Thomas J. "Transport of light in a scattering medium through multiple small-angle scattering". Physical Review A 44, nr 2 (1.07.1991): 1321–27. http://dx.doi.org/10.1103/physreva.44.1321.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Castelletto, V., i I. W. Hamley. "Capillary flow behavior of worm-like micelles studied by small-angle X-ray scattering and small angle light scattering". Polymers for Advanced Technologies 17, nr 3 (2006): 137–44. http://dx.doi.org/10.1002/pat.712.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Holoubek, Jaroslav, i Josef Baldrian. "Speckle patterns in small angle light scattering: The spatial autocorrelation function". Collection of Czechoslovak Chemical Communications 50, nr 12 (1985): 2873–83. http://dx.doi.org/10.1135/cccc19852873.

Pełny tekst źródła
Streszczenie:
The study deals with the determination of the spatial autocorrelation function of speckle patterns caused by the small-angle light scattering from polymer films. The autocorrelation function determines the shape, size and anisometry of the speckle. The effect of the inner structure and orientation of samples (polypropylene foil, poly(decamethylene terephthalate) and a sample of polypropylene filaments) is discussed; it is shown that under the usual experimental conditions the spatial autocorrelation function of speckle patterns can be determined on the basis of the van Cittert-Zernike theorem of the classical coherence theory. The good agreement between the theoretical and experimental dependences of anisometry, the angular dependence of speckle size and the dependence of speckle size on the sample thickness confirm the suitability of a uniform description based on the classical theory of coherence. From the standpoint of the theory of speckle effect, the results presented in this study allow us to infer that in the light scattering from polymer films under usual conditions the assumptions of the application of the central limit theorem are fulfilled: in the scattering volume there is a sufficient number of scattering units, and path fluctuations due to the scattering foil exceed the wavelength of light.
Style APA, Harvard, Vancouver, ISO itp.
26

Carsughi, F., R. P. May, R. Plenteda i J. Saroun. "Sample geometry effects on incoherent small-angle scattering of light water". Journal of Applied Crystallography 33, nr 1 (1.02.2000): 112–17. http://dx.doi.org/10.1107/s0021889899013643.

Pełny tekst źródła
Streszczenie:
Light water is frequently used as a standard for calibrating small-angle neutron scattering (SANS) data. The intensities collected for 1 and 2 mm of light water in standard quartz cells may differ by up to about 50% due to the presence of multiple and inelastic scattering [Rennie & Heenan (1993).Proceedings of ISSI Meeting, Dubna,pp. 254–260, Report E3-93-65; Teixeira (1992).Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution, edited by S. H. Chen, pp. 625–658. Dordrecht: Kluwer Academic Publishers]. Multiple scattering increases with the thickness of the sample. The use of only elastically scattered neutrons may lead to an absolute intensity of the SANS data of about a factor of 2 higher than that obtained by taking into account all of the neutrons on the detector [Ghosh & Rennie (1990).Inst. Phys. Conf. Ser.107, 233–244]. However, it is shown here that the scattering intensities collected with different ratios of sample-to-beam dimension do present large differences as a function of sample thickness. In particular, ratios smaller and larger than unity are considered and the results are discussed and compared with Monte Carlo simulations.
Style APA, Harvard, Vancouver, ISO itp.
27

Henderson, Stephen J. "Isotope effects in solution small-angle X-ray scattering". Journal of Applied Crystallography 32, nr 1 (1.02.1999): 113–14. http://dx.doi.org/10.1107/s0021889898010498.

Pełny tekst źródła
Streszczenie:
While the difference between using heavy and light water as solvents for small-angle neutron scattering experiments is well known, the lesser difference for the case of small-angle X-ray scattering with these same isotopes of water has, as yet, not been reported. This difference for the case of X-rays is discussed and quantified for several familiar materials: polystyrene latexes, proteins and lipids.
Style APA, Harvard, Vancouver, ISO itp.
28

Zhou, Jiamin, i Jing Sheng. "Small angle light backscattering of polymer blends: 1. Multiple scattering". Polymer 38, nr 15 (lipiec 1997): 3727–31. http://dx.doi.org/10.1016/s0032-3861(96)00966-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Loiko, V. A., U. Maschke, V. Ya Zyryanov, A. V. Konkolovich i A. A. Misckevich. "Small-angle light scattering from polymer-dispersed liquid-crystal films". Journal of Experimental and Theoretical Physics 107, nr 4 (październik 2008): 692–98. http://dx.doi.org/10.1134/s1063776108100178.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Stone, S., G. Bushell, R. Amal, Z. Ma, H. G. Merkus i B. Scarlett. "Characterization of large fractal aggregates by small-angle light scattering". Measurement Science and Technology 13, nr 3 (8.02.2002): 357–64. http://dx.doi.org/10.1088/0957-0233/13/3/318.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Chen, Tuan W. "Superposition principle in small‐angle light scattering at high frequency". Journal of Applied Physics 70, nr 2 (15.07.1991): 1031–32. http://dx.doi.org/10.1063/1.349686.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Cipelletti, Luca, Marina Carpineti i Marzio Giglio. "Two-color cross-correlation in small-angle static light scattering". Physical Review E 57, nr 3 (1.03.1998): 3485–93. http://dx.doi.org/10.1103/physreve.57.3485.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Tabar, R. J., R. S. Stein i D. E. Rose. "The effect of spherulitic truncation on small-angle light scattering". Journal of Polymer Science: Polymer Physics Edition 23, nr 10 (październik 1985): 2059–84. http://dx.doi.org/10.1002/pol.1985.180231007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Wissler, G. E., i B. Crist. "Small-angle light scattering from a distribution of spherulite sizes". Journal of Polymer Science: Polymer Physics Edition 23, nr 11 (listopad 1985): 2395–406. http://dx.doi.org/10.1002/pol.1985.180231112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Bisyarin, Mikhail A., Mikhail A. Eronyan, Alexey Yu Kulesh, Igor K. Meshkovskiy, Alexander A. Reutsky, Artem A. Shcheglov i Sergey V. Ustinov. "Light-emitting optical fibers with controllable anomalous small-angle scattering". Journal of the Optical Society of America B 34, nr 11 (23.10.2017): 2396. http://dx.doi.org/10.1364/josab.34.002396.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Chen, Tuan W., i Lei Ming Yang. "Simple formula for small-angle light scattering by a spheroid". Optics Communications 123, nr 4-6 (luty 1996): 437–42. http://dx.doi.org/10.1016/0030-4018(95)00549-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Vogel, H. J., G. Baur i W. Burchard. "Quantitative determination of large structures by small-angle light scattering". Colloid & Polymer Science 279, nr 2 (5.02.2001): 166–70. http://dx.doi.org/10.1007/s003960000314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Geissler, Erik, Anne-Marie Hecht, Cyrille Rochas, Ferenc Horkay i Peter J. Basser. "Light, Small Angle Neutron and X-Ray Scattering from Gels". Macromolecular Symposia 227, nr 1 (lipiec 2005): 27–38. http://dx.doi.org/10.1002/masy.200550903.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Zhang, Rongrui, i Heng Zhao. "A Novel Method for Online Extraction of Small-Angle Scattering Pulse Signals from Particles Based on Variable Forgetting Factor RLS Algorithm". Sensors 21, nr 17 (26.08.2021): 5759. http://dx.doi.org/10.3390/s21175759.

Pełny tekst źródła
Streszczenie:
The small-angle optical particle counter (OPC) can detect particles with strong light absorption. At the same time, it can ignore the properties of the detected particles and detect the particle size singly and more accurately. Reasonably improving the resolution of the low pulse signal of fine particles is key to improving the detection accuracy of the small-angle OPC. In this paper, a new adaptive filtering method for the small-angle scattering signals of particles is proposed based on the recursive least squares (RLS) algorithm. By analyzing the characteristics of the small-angle scattering signals, a variable forgetting factor (VFF) strategy is introduced to optimize the forgetting factor in the traditional RLS algorithm. It can distinguish the scattering signal from the stray light signal and dynamically adapt to the change in pulse amplitude according to different light absorptions and different particle sizes. To verify the filtering effect, small-angle scattering pulse extraction experiments were carried out in a simulated smoke box with different particle properties. The experiments show that the proposed VFF-RLS algorithm can effectively suppress system stray light and background noise. When the particle detection signal appears, the algorithm has fast convergence and tracking speed and highlights the particle pulse signal well. Compared with that of the traditional scattering pulse extraction method, the resolution of the processed scattering pulse signal of particles is greatly improved, and the extraction of weak particle scattering pulses at a small angle has a greater advantage. Finally, the effect of filter order in the algorithm on the results of extracting scattering pulses is discussed.
Style APA, Harvard, Vancouver, ISO itp.
40

Nishida, Koji, Hiroki Ogawa, Go Matsuba, Takashi Konishi i Toshiji Kanaya. "A high-resolution small-angle light scattering instrument for soft matter studies". Journal of Applied Crystallography 41, nr 4 (6.06.2008): 723–28. http://dx.doi.org/10.1107/s002188980801265x.

Pełny tekst źródła
Streszczenie:
A small-angle light scattering (SALS) instrument with a high resolution at low angles and a high signal-to-noise ratio has been developed. Both a wide dynamic range and a wide scattering vector range are achieved using a two-dimensional array of complementary metal oxide semiconductor image sensors. These instrument characteristics have enabled us to obtain high-quality light scattering data from soft matter systems. This setup is especially well suited to studies of systems with a weak scattering power and/or a time-dependent structure evolution in a wide spatial range from submicrometre to submillimetre. An application of this instrument to a polyelectrolyte blend and an extremely thin blend film are reported.
Style APA, Harvard, Vancouver, ISO itp.
41

GANOULIS, N., i M. HATZIS. "LIGHT SCATTERING BY AN AXIONIC DOMAIN WALL". Modern Physics Letters A 01, nr 06 (wrzesień 1986): 409–14. http://dx.doi.org/10.1142/s0217732386000518.

Pełny tekst źródła
Streszczenie:
We discuss the electromagnetic scattering of a plane wave by an axionic domain wall, under an arbitrary incident angle. We estimate the reflection coefficient which depends on the plane wave frequency and angle and take always a very small value. The two independent circular polarizations propagate with different velocities through the wall.
Style APA, Harvard, Vancouver, ISO itp.
42

Izumi, Atsushi, Takeshi Takeuchi, Toshio Nakao i Mitsuhiro Shibayama. "Dynamic light scattering and small-angle neutron scattering studies on phenolic resin solutions". Polymer 52, nr 19 (wrzesień 2011): 4355–61. http://dx.doi.org/10.1016/j.polymer.2011.06.059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Borsali, Redouane, Huy Nguyen i R. Pecora. "Small-Angle Neutron Scattering and Dynamic Light Scattering from a Polyelectrolyte Solution: DNA". Macromolecules 31, nr 5 (marzec 1998): 1548–55. http://dx.doi.org/10.1021/ma970919b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Mazeron, P., S. Muller i H. El Azouzi. "Deformation of Erythrocytes Under Shear: A Small-Angle Light Scattering Study". Biorheology 34, nr 2 (1.06.1997): 99–110. http://dx.doi.org/10.3233/bir-1997-34202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Maugey, J., T. Van Nuland i P. Navard. "Small angle light scattering investigation of polymerisation induced phase separation mechanisms". Polymer 42, nr 9 (kwiecień 2001): 4353–66. http://dx.doi.org/10.1016/s0032-3861(00)00743-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Maugey, Jérôme, i Patrick Navard. "Small angle light scattering investigation of polymer dispersed liquid crystal composites". Polymer 43, nr 25 (styczeń 2002): 6829–37. http://dx.doi.org/10.1016/s0032-3861(02)00568-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Inocêncio da Luz, R. A., H. M. Mavoko, I. Crandall, S. Deshpande, P. Lutumba i J. P. Van geertruyden. "Small angle light scattering assay for the detection of malaria infection". Talanta 147 (styczeń 2016): 473–77. http://dx.doi.org/10.1016/j.talanta.2015.10.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

MAZERON, P., S. MULLER i H. ELAZOUZI. "Deformation of erythrocytes under shear: A small-angle light scattering study". Biorheology 34, nr 2 (marzec 1997): 99–110. http://dx.doi.org/10.1016/s0006-355x(97)00007-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Alexander, Marcela, i F. Ross Hallett. "Small-angle light scattering: instrumental design and application to particle sizing". Applied Optics 38, nr 19 (1.07.1999): 4158. http://dx.doi.org/10.1364/ao.38.004158.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Takebe, Tomoaki, Takeji Hashimoto, Benoit Ernst, Patrick Navard i Richard S. Stein. "Small‐angle light scattering of polymer liquid crystals under shear flow". Journal of Chemical Physics 92, nr 2 (15.01.1990): 1386–96. http://dx.doi.org/10.1063/1.458150.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii