Artykuły w czasopismach na temat „Sitinakite”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Sitinakite.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 17 najlepszych artykułów w czasopismach naukowych na temat „Sitinakite”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Panikorovskii, Taras L., Galina O. Kalashnikova, Anatoly I. Nikolaev, Igor A. Perovskiy, Ayya V. Bazai, Victor N. Yakovenchuk, Vladimir N. Bocharov, Natalya A. Kabanova i Sergey V. Krivovichev. "Ion-Exchange-Induced Transformation and Mechanism of Cooperative Crystal Chemical Adaptation in Sitinakite: Theoretical and Experimental Study". Minerals 12, nr 2 (15.02.2022): 248. http://dx.doi.org/10.3390/min12020248.

Pełny tekst źródła
Streszczenie:
The microporous titanosilicate sitinakite, KNa2Ti4(SiO4)2O5(OH)·4H2O, was first discovered in the Khibiny alkaline massif. This material is also known as IONSIV IE-911 and is considered as one of the most effective sorbents for Cs+ and Sr2+ from water solutions. We investigate a mechanism of cooperative crystal chemical adaptation caused by the incorporation of La3+ ions into sitinakite structure by the combination of theoretical (geometrical–topological analysis, Voronoi migration map calculation, structural complexity calculation) and empirical methods (PXRD, SCXRD, Raman spectroscopy, scanning electron microscopy). The natural crystals of sitinakite (a = 7.8159(2), c = 12.0167(3) Å) were kept in a 1M solution of La(NO3)3 for 24 h. The ordering of La3+ cations in the channels of the ion-exchanged form La3+Ti4(SiO4)2O5(OH)·4H2O (a = 11.0339(10), b = 11.0598(8), c = 11.8430(7) Å), results in the symmetry breaking according to the group–subgroup relation P42/mcm → Cmmm.
Style APA, Harvard, Vancouver, ISO itp.
2

Milne, Nicholas A., Christopher S. Griffith, John V. Hanna, Maria Skyllas-Kazacos i Vittorio Luca. "Lithium Intercalation into the Titanosilicate Sitinakite". Chemistry of Materials 18, nr 14 (lipiec 2006): 3192–202. http://dx.doi.org/10.1021/cm0523337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Dyer, Alan, Jon Newton, Luke O’Brien i Scott Owens. "Studies on a synthetic sitinakite-type silicotitanate cation exchanger". Microporous and Mesoporous Materials 117, nr 1-2 (styczeń 2009): 304–8. http://dx.doi.org/10.1016/j.micromeso.2008.07.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Luca, Vittorio, John V. Hanna, Mark E. Smith, Michael James, David R. G. Mitchell i John R. Bartlett. "Nb-substitution and Cs+ ion-exchange in the titanosilicate sitinakite". Microporous and Mesoporous Materials 55, nr 1 (sierpień 2002): 1–13. http://dx.doi.org/10.1016/s1387-1811(02)00353-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Tripathi, Akhilesh, Dmitri G. Medvedev, May Nyman i Abraham Clearfield. "Selectivity for Cs and Sr in Nb-substituted titanosilicate with sitinakite topology". Journal of Solid State Chemistry 175, nr 1 (październik 2003): 72–83. http://dx.doi.org/10.1016/s0022-4596(03)00145-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Thorogood, Gordon J., Brendan J. Kennedy, Christopher S. Griffith, Maragaret M. Elcombe, Maxim Avdeev, John V. Hanna, Samantha K. Thorogood i Vittorio Luca. "Structure and Phase Transformations in the Titanosilicate, Sitinakite. The Importance of Water". Chemistry of Materials 22, nr 14 (27.07.2010): 4222–31. http://dx.doi.org/10.1021/cm100727h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Perovskiy, Igor A., Elena V. Khramenkova, Evgeny A. Pidko, Pavel V. Krivoshapkin, Alexandr V. Vinogradov i Elena F. Krivoshapkina. "Efficient extraction of multivalent cations from aqueous solutions into sitinakite-based sorbents". Chemical Engineering Journal 354 (grudzień 2018): 727–39. http://dx.doi.org/10.1016/j.cej.2018.08.030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Medvedev, Dmitri G., Akhilesh Tripathi, Abraham Clearfield, Aaron J. Celestian, John B. Parise i Jonathan Hanson. "Crystallization of Sodium Titanium Silicate with Sitinakite Topology: Evolution from the Sodium Nonatitanate Phase". Chemistry of Materials 16, nr 19 (wrzesień 2004): 3659–66. http://dx.doi.org/10.1021/cm049479a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Gainey, Seth R., Matheus T. Lauar, Christopher T. Adcock, Jacimaria R. Batista, Kenneth Czerwinski i David W. Hatchett. "The influence of thermal processing on the sorption of Cs and Sr by sitinakite". Microporous and Mesoporous Materials 296 (kwiecień 2020): 109995. http://dx.doi.org/10.1016/j.micromeso.2019.109995.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Celestian, A. J., M. Powers i S. Rader. "In situ Raman spectroscopic study of transient polyhedral distortions during cesium ion exchange into sitinakite". American Mineralogist 98, nr 7 (1.07.2013): 1153–61. http://dx.doi.org/10.2138/am.2013.4349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Liu, Yao, Dong Yang, Renhe Wang, Jingyuan Liu, Duan Bin, Haifeng Zhu, Kun Liu, Jianhang Huang, Yong-Gang Wang i Yong-Yao Xia. "Niobium-Doped Titanosilicate Sitinakite Anode with Low Working Potential and High Rate for Sodium-Ion Batteries". ACS Sustainable Chemistry & Engineering 7, nr 4 (21.01.2019): 4399–405. http://dx.doi.org/10.1021/acssuschemeng.8b06326.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ferdov, Stanislav, Rute A. Sá Ferreira i Zhi Lin. "Optical properties and local structure of Eu3+-doped synthetic analogue of the microporous titanosilicate mineral sitinakite". Journal of Luminescence 128, nr 7 (lipiec 2008): 1108–12. http://dx.doi.org/10.1016/j.jlumin.2007.11.085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Milcent, Théo, Audrey Hertz, Yves Barré i Agnès Grandjean. "Influence of the Nb content and microstructure of sitinakite-type crystalline silicotitanates (CSTs) on their Sr2+ and Cs+ sorption properties". Chemical Engineering Journal 426 (grudzień 2021): 131425. http://dx.doi.org/10.1016/j.cej.2021.131425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Dyer, Alan, Jon Newton, Luke O’Brien i Scott Owens. "Studies on a synthetic sitinakite-type silicotitanate cation exchanger. Part 2. Effect of alkaline earth and alkali metals on the uptake of Cs and Sr radioisotopes". Microporous and Mesoporous Materials 120, nr 3 (kwiecień 2009): 272–77. http://dx.doi.org/10.1016/j.micromeso.2008.11.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Hall, Reece, i Jennifer Readman. "EXAFS studies of the metal coordination environments in mixed Ti/Zr silicates". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1526. http://dx.doi.org/10.1107/s2053273314084733.

Pełny tekst źródła
Streszczenie:
Microporous materials have a wide range of commercial uses from ion-exchangers to catalysts and have been used in the treatment of nuclear waste. The acidity associated with legacy waste pools often limits the effectiveness of these zeolites due to a loss of crystallinity. Microporous titanium silicates display different structural characteristics compared to conventional zeolites. Sitinakite, KNa2Ti4Si2O13(OH)·4H2O and the synthetic niobium doped analogue are being used as ion-exchange materials for the removal of Cs+and Sr2+from nuclear waste . Natisite is a layered titanium silicate with titanium in an unusual 5 coordinate square pyramidal environment. Natisite, Na2TiSiO5, crystallises in the tetragonal space group P4/nmm. [1, 2] A series of samples have been prepared with varying levels of zirconium doping ranging from 10% to 50%. Powder x-ray diffraction (PXRD) showed no obvious impurities attributed to zirconium containing phase. X-Ray Fluorescence (XRF) was carried out and showed the presence of zirconium indicating that doping had been successful. Ion-exchange experiments were carried out on the doped and undoped natiste samples using Cs and Co containing solutions. It was found that increasing the levels of zirconium increased the affinity towards Cs with the undoped materials taking up very little Cs. The rate of exchange with Co seemed to increase as the zirconium level was increased within the sample. This suggests that the presence of zirconium in the framework has a considerable effect on the ion-exchange properties of natisite. EXAFS has been useful in determining the coordination environment of titanium and zirconium in order to help fully understand the chemistry of this material. Also it has helped with determining if the exchanged Cs and Co have a preference for the sites close to Zr rather than Ti. It is therefore believed that the inclusion of zirconium in the natisite framework has potential use as an ion-exchanger in the nuclear industry.
Style APA, Harvard, Vancouver, ISO itp.
16

Milne, Nicholas A., Christopher S. Griffith, John V. Hanna, Maria Skyllas-Kazacos i Vittorio Luca. "Lithium Intercalation into the Titanosilicate Sitinakite." ChemInform 37, nr 39 (26.09.2006). http://dx.doi.org/10.1002/chin.200639015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

"Titanosilicate Sitinakite Compound As a Low-Potential Anode for Sodium-Ion Battery". ECS Meeting Abstracts, 2019. http://dx.doi.org/10.1149/ma2019-03/2/109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii