Gotowa bibliografia na temat „Singularly Perturbed Differential Equation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Singularly Perturbed Differential Equation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Singularly Perturbed Differential Equation"
Kanth, A. S. V. Ravi, i P. Murali Mohan Kumar. "A Numerical Technique for Solving Nonlinear Singularly Perturbed Delay Differential Equations". Mathematical Modelling and Analysis 23, nr 1 (12.02.2018): 64–78. http://dx.doi.org/10.3846/mma.2018.005.
Pełny tekst źródłaYüzbaşı, Şuayip, i Mehmet Sezer. "Exponential Collocation Method for Solutions of Singularly Perturbed Delay Differential Equations". Abstract and Applied Analysis 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/493204.
Pełny tekst źródłaBattelli, Flaviano, i Michal Fečkan. "Periodic Solutions in Slowly Varying Discontinuous Differential Equations: The Generic Case". Mathematics 9, nr 19 (2.10.2021): 2449. http://dx.doi.org/10.3390/math9192449.
Pełny tekst źródłaYUZBASI, SUAYIP, i NURCAN BAYKUS SAVASANERIL. "HERMITE POLYNOMIAL APPROACH FOR SOLVING SINGULAR PERTURBATED DELAY DIFFERENTIAL EQUATIONS". Journal of Science and Arts 20, nr 4 (30.12.2020): 845–54. http://dx.doi.org/10.46939/j.sci.arts-20.4-a06.
Pełny tekst źródłaEt. al., M. Adilaxmi ,. "Solution Of Singularly Perturbed Delay Differential Equations Using Liouville Green Transformation". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, nr 4 (11.04.2021): 325–35. http://dx.doi.org/10.17762/turcomat.v12i4.510.
Pełny tekst źródłaDuressa, Gemechis File, Imiru Takele Daba i Chernet Tuge Deressa. "A Systematic Review on the Solution Methodology of Singularly Perturbed Differential Difference Equations". Mathematics 11, nr 5 (22.02.2023): 1108. http://dx.doi.org/10.3390/math11051108.
Pełny tekst źródłaBobodzhanov, A., B. Kalimbetov i N. Pardaeva. "Construction of a regularized asymptotic solution of an integro-differential equation with a rapidly oscillating cosine". Journal of Mathematics and Computer Science 32, nr 01 (21.07.2023): 74–85. http://dx.doi.org/10.22436/jmcs.032.01.07.
Pełny tekst źródłaSharip, B., i А. Т. Yessimova. "ESTIMATION OF A BOUNDARY VALUE PROBLEM SOLUTION WITH INITIAL JUMP FOR LINEAR DIFFERENTIAL EQUATION". BULLETIN Series of Physics & Mathematical Sciences 69, nr 1 (10.03.2020): 168–73. http://dx.doi.org/10.51889/2020-1.1728-7901.28.
Pełny tekst źródłaZhumanazarova, Assiya, i Young Im Cho. "Asymptotic Convergence of the Solution of a Singularly Perturbed Integro-Differential Boundary Value Problem". Mathematics 8, nr 2 (7.02.2020): 213. http://dx.doi.org/10.3390/math8020213.
Pełny tekst źródłaVrábeľ, Róbert. "Asymptotic behavior of $T$-periodic solutions of singularly perturbed second-order differential equation". Mathematica Bohemica 121, nr 1 (1996): 73–76. http://dx.doi.org/10.21136/mb.1996.125946.
Pełny tekst źródłaRozprawy doktorskie na temat "Singularly Perturbed Differential Equation"
Mbroh, Nana Adjoah. "On the method of lines for singularly perturbed partial differential equations". University of the Western Cape, 2017. http://hdl.handle.net/11394/5679.
Pełny tekst źródłaMany chemical and physical problems are mathematically described by partial differential equations (PDEs). These PDEs are often highly nonlinear and therefore have no closed form solutions. Thus, it is necessary to recourse to numerical approaches to determine suitable approximations to the solution of such equations. For solutions possessing sharp spatial transitions (such as boundary or interior layers), standard numerical methods have shown limitations as they fail to capture large gradients. The method of lines (MOL) is one of the numerical methods used to solve PDEs. It proceeds by the discretization of all but one dimension leading to systems of ordinary di erential equations. In the case of time-dependent PDEs, the MOL consists of discretizing the spatial derivatives only leaving the time variable continuous. The process results in a system to which a numerical method for initial value problems can be applied. In this project we consider various types of singularly perturbed time-dependent PDEs. For each type, using the MOL, the spatial dimensions will be discretized in many different ways following fitted numerical approaches. Each discretisation will be analysed for stability and convergence. Extensive experiments will be conducted to confirm the analyses.
Song, Xuefeng. "Dynamic modeling issues for power system applications". Texas A&M University, 2003. http://hdl.handle.net/1969.1/1591.
Pełny tekst źródłaIragi, Bakulikira. "On the numerical integration of singularly perturbed Volterra integro-differential equations". University of the Western Cape, 2017. http://hdl.handle.net/11394/5669.
Pełny tekst źródłaEfficient numerical approaches for parameter dependent problems have been an inter- esting subject to numerical analysts and engineers over the past decades. This is due to the prominent role that these problems play in modeling many real life situations in applied sciences. Often, the choice and the e ciency of the approaches depend on the nature of the problem to solve. In this work, we consider the general linear first-order singularly perturbed Volterra integro-differential equations (SPVIDEs). These singularly perturbed problems (SPPs) are governed by integro-differential equations in which the derivative term is multiplied by a small parameter, known as "perturbation parameter". It is known that when this perturbation parameter approaches zero, the solution undergoes fast transitions across narrow regions of the domain (termed boundary or interior layer) thus affecting the convergence of the standard numerical methods. Therefore one often seeks for numerical approaches which preserve stability for all the values of the perturbation parameter, that is "numerical methods. This work seeks to investigate some "numerical methods that have been used to solve SPVIDEs. It also proposes alternative ones. The various numerical methods are composed of a fitted finite difference scheme used along with suitably chosen interpolating quadrature rules. For each method investigated or designed, we analyse its stability and convergence. Finally, numerical computations are carried out on some test examples to con rm the robustness and competitiveness of the proposed methods.
Davis, Paige N. "Localised structures in some non-standard, singularly perturbed partial differential equations". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/201835/1/Paige_Davis_Thesis.pdf.
Pełny tekst źródłaAdkins, Jacob. "A Robust Numerical Method for a Singularly Perturbed Nonlinear Initial Value Problem". Kent State University Honors College / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1513331499579714.
Pełny tekst źródłaHöhne, Katharina. "Analysis and numerics of the singularly perturbed Oseen equations". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-188322.
Pełny tekst źródłaReibiger, Christian. "Optimal Control Problems with Singularly Perturbed Differential Equations as Side Constraints: Analysis and Numerics". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-162862.
Pełny tekst źródłaKaiser, Klaus [Verfasser], Sebastian [Akademischer Betreuer] Noelle, Jochen [Akademischer Betreuer] Schütz i Claus-Dieter [Akademischer Betreuer] Munz. "A high order discretization technique for singularly perturbed differential equations / Klaus Kaiser ; Sebastian Noelle, Jochen Schütz, Claus-Dieter Munz". Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1187251372/34.
Pełny tekst źródłaReibiger, Christian [Verfasser], Hans-Görg [Akademischer Betreuer] Roos i Gert [Akademischer Betreuer] Lube. "Optimal Control Problems with Singularly Perturbed Differential Equations as Side Constraints: Analysis and Numerics / Christian Reibiger. Gutachter: Hans-Görg Roos ; Gert Lube. Betreuer: Hans-Görg Roos". Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://d-nb.info/106909658X/34.
Pełny tekst źródłaRoos, Hans-Görg, i Martin Schopf. "Layer structure and the galerkin finite element method for a system of weakly coupled singularly perturbed convection-diffusion equations with multiple scales". Cambridge University Press, 2015. https://tud.qucosa.de/id/qucosa%3A39046.
Pełny tekst źródłaKsiążki na temat "Singularly Perturbed Differential Equation"
Scroggs, Jeffrey S. Shock-layer bounds for a singularly perturbed equation. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1990.
Znajdź pełny tekst źródłaRoos, Hans-Görg, Martin Stynes i Lutz Tobiska. Numerical Methods for Singularly Perturbed Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03206-0.
Pełny tekst źródłaF, Mishchenko E., red. Asymptotic methods in singularly perturbed systems. New York: Consultants Bureau, 1994.
Znajdź pełny tekst źródłaHomogenization in time of singularly perturbed mechanical systems. Berlin: Springer-Verlag, 1998.
Znajdź pełny tekst źródłaMazʹi︠a︡, V. G. Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Basel: Birkhäuser Verlag, 2000.
Znajdź pełny tekst źródłaBoglaev, Igor. Domain decomposition in boundary layers for a singularly perturbed parabolic problem. Palmerston North, N.Z: Faculty of Information and Mathematical Sciences, Massey University, 1997.
Znajdź pełny tekst źródłaWang, Kelei. Free Boundary Problems and Asymptotic Behavior of Singularly Perturbed Partial Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33696-6.
Pełny tekst źródłaRoos, Hans-Görg. Numerical methods for singularly perturbed differential equations: Convection-diffusion and flow problems. Berlin: Springer-Verlag, 1996.
Znajdź pełny tekst źródłaAsymptotic behavior of monodromy: Singularly perturbed differential equations on a Riemann surface. Berlin: Springer-Verlag, 1991.
Znajdź pełny tekst źródłaMazia, V. G. Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Basel: Springer Basel, 2000.
Znajdź pełny tekst źródłaCzęści książek na temat "Singularly Perturbed Differential Equation"
Sharkovsky, A. N., Yu L. Maistrenko i E. Yu Romanenko. "Singularly Perturbed Differential-Difference Equations". W Difference Equations and Their Applications, 239–72. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1763-0_10.
Pełny tekst źródłaO’Malley, Robert E. "Singularly Perturbed Initial Value Problems". W Singular Perturbation Methods for Ordinary Differential Equations, 22–91. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0977-5_2.
Pełny tekst źródłaO’Malley, Robert E. "Singularly Perturbed Boundary Value Problems". W Singular Perturbation Methods for Ordinary Differential Equations, 92–200. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0977-5_3.
Pełny tekst źródłaBauer, S. M., S. B. Filippov, A. L. Smirnov, P. E. Tovstik i R. Vaillancourt. "Singularly Perturbed Linear Ordinary Differential Equations". W Asymptotic methods in mechanics of solids, 155–237. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18311-4_4.
Pełny tekst źródłaWang, Kelei. "The Limit Equation of a Singularly Perturbed System". W Free Boundary Problems and Asymptotic Behavior of Singularly Perturbed Partial Differential Equations, 95–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33696-6_7.
Pełny tekst źródłaFruchard, Augustin, i Reinhard Schäfke. "Composite Expansions and Singularly Perturbed Differential Equations". W Composite Asymptotic Expansions, 81–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34035-2_5.
Pełny tekst źródłaHaber, S., i N. Levinson. "A Boundary Value Problem for A Singularly Perturbed Differential Equation". W Selected Papers of Norman Levinson, 376–83. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-5332-7_35.
Pełny tekst źródłaLevinson, N. "A Boundary Value Problem for A Singularly Perturbed Differential Equation". W Selected Papers of Norman Levinson, 384–95. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-5332-7_36.
Pełny tekst źródłaHaber, S., i N. Levinson. "A Boundary Value Problem for a Singularly Perturbed Differential Equation". W Selected Papers of Norman Levinson Volume 1, 376–83. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-5341-9_35.
Pełny tekst źródłaLevinson, N. "A Boundary Value Problem for a Singularly Perturbed Differential Equation". W Selected Papers of Norman Levinson Volume 1, 384–95. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-5341-9_36.
Pełny tekst źródłaStreszczenia konferencji na temat "Singularly Perturbed Differential Equation"
GELFREICH, V., i L. M. LERMAN. "SLOW MANIFOLDS IN A SINGULARLY PERTURBED HAMILTONIAN SYSTEM". W Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0146.
Pełny tekst źródłaThang Nguyen i Zoran Gajic. "Solving the singularly perturbed matrix differential Riccati equation: A Lyapunov equation approach". W 2010 American Control Conference (ACC 2010). IEEE, 2010. http://dx.doi.org/10.1109/acc.2010.5530936.
Pełny tekst źródłaArora, Geeta, i Mandeep Kaur. "Numerical simulation of singularly perturbed differential equation with small shift". W RECENT ADVANCES IN FUNDAMENTAL AND APPLIED SCIENCES: RAFAS2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4990346.
Pełny tekst źródłaWARD, MICHAEL J. "SPIKES FOR SINGULARLY PERTURBED REACTION-DIFFUSION SYSTEMS AND CARRIER’S PROBLEM". W Differential Equations & Asymptotic Theory in Mathematical Physics. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702395_0003.
Pełny tekst źródłaButuzov, Valentin Fedorovich. "Singularly perturbed ODEs with multiple roots of the degenerate equation". W International Conference "Optimal Control and Differential Games" dedicated to the 110th anniversary of L. S. Pontryagin. Moscow: Steklov Mathematical Institute, 2018. http://dx.doi.org/10.4213/proc22964.
Pełny tekst źródłaDemir, Duygu Dönmez, i Erhan Koca. "The shooting method for the second order singularly perturbed differential equation". W INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4952091.
Pełny tekst źródłaYadav, S., i S. Ganesan. "SPDE-ConvNet: Predict stabilization parameter for Singularly Perturbed Partial Differential Equation". W 8th European Congress on Computational Methods in Applied Sciences and Engineering. CIMNE, 2022. http://dx.doi.org/10.23967/eccomas.2022.258.
Pełny tekst źródłaDOELMAN, A., D. IRON i Y. NISHIURA. "EDGE BIFURCATIONS IN SINGULARLY PERTURBED REACTION-DIFFUSION EQUATIONS: A CASE STUDY". W Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0130.
Pełny tekst źródłaDrǎgan, Vasile F., i Achim Ioniţǎ. "Exponential stability for singularly perturbed systems with state delays". W The 6'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 1999. http://dx.doi.org/10.14232/ejqtde.1999.5.6.
Pełny tekst źródłaMacutan, Y. O. "Formal solutions of scalar singularly-perturbed linear differential equations". W the 1999 international symposium. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/309831.309879.
Pełny tekst źródłaRaporty organizacyjne na temat "Singularly Perturbed Differential Equation"
Yan, Xiaopu. Singularly Perturbed Differential/Algebraic Equations. Fort Belvoir, VA: Defense Technical Information Center, październik 1994. http://dx.doi.org/10.21236/ada288365.
Pełny tekst źródłaFlaherty, Joseph E., i Robert E. O'Malley. Asymptotic and Numerical Methods for Singularly Perturbed Differential Equations with Applications to Impact Problems. Fort Belvoir, VA: Defense Technical Information Center, maj 1986. http://dx.doi.org/10.21236/ada169251.
Pełny tekst źródła