Gotowa bibliografia na temat „Single Phase Multiferroic Materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Single Phase Multiferroic Materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Single Phase Multiferroic Materials"
Yeo, Hong Goo. "Review of Single-Phase Magnetoelectric Multiferroic Thin Film and Process". Ceramist 24, nr 3 (30.09.2021): 295–313. http://dx.doi.org/10.31613/ceramist.2021.24.3.01.
Pełny tekst źródłaCho, Jae-Hyeon, i Wook Jo. "Progress in the Development of Single-Phase Magnetoelectric Multiferroic Oxides". Ceramist 24, nr 3 (30.09.2021): 228–47. http://dx.doi.org/10.31613/ceramist.2021.24.3.03.
Pełny tekst źródłaZhao, Shifeng. "Advances in Multiferroic Nanomaterials Assembled with Clusters". Journal of Nanomaterials 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/101528.
Pełny tekst źródłaHajlaoui, Thameur, Catalin Harnagea i Alain Pignolet. "Magnetoelectric Coupling in Room Temperature Multiferroic Ba2EuFeNb4O15/BaFe12O19 Epitaxial Heterostructures Grown by Laser Ablation". Nanomaterials 13, nr 4 (17.02.2023): 761. http://dx.doi.org/10.3390/nano13040761.
Pełny tekst źródłaShukla, Dinesh, Nhalil E. Rajeevan i Ravi Kumar. "Combining Magnetism and Ferroelectricity towards Multiferroicity". Solid State Phenomena 189 (czerwiec 2012): 15–40. http://dx.doi.org/10.4028/www.scientific.net/ssp.189.15.
Pełny tekst źródłaDong, Shuai, Hongjun Xiang i Elbio Dagotto. "Magnetoelectricity in multiferroics: a theoretical perspective". National Science Review 6, nr 4 (18.02.2019): 629–41. http://dx.doi.org/10.1093/nsr/nwz023.
Pełny tekst źródłaRoy, Kuntal. "Dynamical systems study in single-phase multiferroic materials". EPL (Europhysics Letters) 108, nr 6 (1.12.2014): 67002. http://dx.doi.org/10.1209/0295-5075/108/67002.
Pełny tekst źródłaLiu, Sheng, Feng Xiang, Yulan Cheng, Yajun Luo i Jing Sun. "Multiferroic and Magnetodielectric Effects in Multiferroic Pr2FeAlO6 Double Perovskite". Nanomaterials 12, nr 17 (30.08.2022): 3011. http://dx.doi.org/10.3390/nano12173011.
Pełny tekst źródłaFerreira, P., A. Castro, P. M. Vilarinho, M. G. Willinger, J. Mosa, C. Laberty i C. Sanchez. "Electron Microscopy Study of Porous and Co Functionalized BaTiO3 Thin Films". Microscopy and Microanalysis 18, S5 (sierpień 2012): 115–16. http://dx.doi.org/10.1017/s1431927612013232.
Pełny tekst źródłaLi, Zheng, Kun Tao, Jing Ma, Zhipeng Gao, Vladimir Koval, Changjun Jiang, Giuseppe Viola i in. "Bi3.25La0.75Ti2.5Nb0.25(Fe0.5Co0.5)0.25O12, a single phase room temperature multiferroic". Journal of Materials Chemistry C 6, nr 11 (2018): 2733–40. http://dx.doi.org/10.1039/c8tc00161h.
Pełny tekst źródłaRozprawy doktorskie na temat "Single Phase Multiferroic Materials"
Hu, Lin. "Oxidation of Single and Dual Phase NiCrAl(Y) Bond Coat Alloys". Cleveland, Ohio : Case Western Reserve University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1253714943.
Pełny tekst źródłaTitle from PDF (viewed on 2009-12-22) Department of Materials Science and Engineering Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
Sun, Jessica H. "Polymer synthesis for corona phase molecular recognition based on single-walled carbon nanotubes". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119068.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 32-34).
Current work within Strano Research Group shows that single-walled carbon nanotubes (SWNT) wrapped with methacrylic acid-styrene heteropolymer (MA-ST) can be used for specific corona phase molecular recognition (CoPhMoRe) of Vardenafil, a small molecule drug. This project is a follow-up study on viability of related polymers for CoPhMoRe sensing of five small molecule drugs: Fluticasone, Sumatriptan, Valacyclovir, Vardenafil, and Bupropion. Methacrylic acid-vinylphenylboronic acid (MA-VBA) heteropolymer and acrylic acid-styrene (AA-ST) heteropolymer were synthesized at different monomer ratios and chain lengths. These polymers were suspended with the carbon nanotubes and screened against the five drugs. The (12,1) chirality of MA-VBA-4 and (7,5) chirality of AA-ST-2 were found to be potential candidates for sensing of Fluticasone and Vardenafil respectively. However, MA-ST 8 remains as the superior choice for the specific sensing of Vardenafil.
by Jessica H. Sun.
S.B.
Wang, Billie. "Integrated Computational Microstructure Engineering for Single-Crystal Nickel-base Superalloys". The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1228147112.
Pełny tekst źródłaHampus, Randén. "Performance improvement from single to multi phase change materials in a thermal energy storage system". Thesis, KTH, Energiteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175153.
Pełny tekst źródłaFasväxlingsmaterial (Phase Change Material, PCM) används i många sammanhang för att lagra energi vid konstant temperatur. Ett sätt att överföra värmen är att låta vatten flöda genom ett flänsat rör nedsänkt i en tank fylld med PCM. Denna modell analyseras med en FEM-baserad numerisk mjukvara. Studien jämför den utvunna effekten ur en modell med endast ett PCM, med effekten utvunnen ur en modell med tre olika PCM. Hypotesen var att ett system med flera material var bättre än ett system med endast ett för att erhålla maximal effekt. Resultatet visar att en modell med flera PCM är effektivare än en modell med endast ett. Det indikerar betydelsen av vilka temperaturer av PCM som väljs för att uppnå så hög effekt som möjligt. Detta område rekommenderas för fortsatta studier.
Yoo, Sehoon. "Oriented arrays of single crystal TiO2 nanofibers by gas-phase etching: processing and characterization". Connect to this title online, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1117566246.
Pełny tekst źródłaTitle from first page of PDF file. Document formatted into pages; contains xix, 217 p.; also includes graphics (some col.) Includes bibliographical references (p. 199-217). Available online via OhioLINK's ETD Center
Counihan, Patrick John. "Nanostructured single-phase Ti₅Si₃ produced by crystallization of mechanically amorphized and shock densified powder compact". Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/19984.
Pełny tekst źródłaMOHAMED, ASHRAF ELSAID. "An Experimental Investigation of Supersonic Rectangular Over-Expanded Nozzle of Single and Two-Phase Flows". University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1204661977.
Pełny tekst źródłaSi, Xiuhua. "Applications of the thermodynamics of elastic, crystalline materials". Texas A&M University, 2005. http://hdl.handle.net/1969.1/4177.
Pełny tekst źródłaWebber, Kyle Grant. "Effect of Domain Wall Motion and Phase Transformations on Nonlinear Hysteretic Constitutive Behavior in Ferroelectric Materials". Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22695.
Pełny tekst źródłaBlößer, André [Verfasser], i Roland [Akademischer Betreuer] Marschall. "Nanostructured, Single-Phase Ferrite Materials : Synthesis, Characterization, and Assessment of Their Suitability for Photocatalytic Applications. / André Blößer ; Betreuer: Roland Marschall". Bayreuth : Universität Bayreuth, 2021. http://d-nb.info/1231356790/34.
Pełny tekst źródłaKsiążki na temat "Single Phase Multiferroic Materials"
Michel, Laguës, i SpringerLink (Online service), red. Scale Invariance: From Phase Transitions to Turbulence. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaRosenberger, F. Growth of zinc selenide single crystals by physical vapor transport in microgravity: Final report, NASA grant NAG8-767, period of performance, 4/1/89 - 8/31/95. Huntsville, Ala: Center for Microgravity and Materials Research, University of Alabama in Huntsville, 1995.
Znajdź pełny tekst źródłaRosenberger, F. Growth of zinc selenide single crystals by physical vapor transport in microgravity: Semi-annual progress report, NASA grant NAG8-767, period of performance, 4/1/93 through 10/1/93. Huntsville, Ala: Center for Microgravity and Materials Research, University of Alabama in Huntsville, 1993.
Znajdź pełny tekst źródłaCantor, Brian. The Equations of Materials. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851875.001.0001.
Pełny tekst źródłaNarlikar, A. V., i Y. Y. Fu, red. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.001.0001.
Pełny tekst źródłaCzęści książek na temat "Single Phase Multiferroic Materials"
He, Yanjie, James Iocozzia i Zhiqun Lin. "Magnetoelectric Effect in Single-Phase Multiferroic Materials". W Nano/Micro-Structured Materials for Energy and Biomedical Applications, 49–75. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7787-6_2.
Pełny tekst źródłaYang, Jan-Chi, Yen-Lin Huang i Ying-Hao Chu. "Single-Phase Type-I Multiferroics". W Series in Material Science and Engineering, 33–65. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372532-3.
Pełny tekst źródłaAngst, Manuel. "Single-Phase Type-I Multiferroics". W Series in Material Science and Engineering, 67–97. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372532-4.
Pełny tekst źródłaDong, Shuai, i Jun-Ming Liu. "Single-Phase Type-II Multiferroics". W Series in Material Science and Engineering, 99–137. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372532-5.
Pełny tekst źródłaStangle, Gregory C. "Expressions for a single-phase material". W Modelling of Materials Processing, 291–310. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5813-2_6.
Pełny tekst źródłaEmbury, J. David, Warren J. Poole i David J. Lloyd. "The Work Hardening of Single Phase and Multi-Phase Aluminium Alloys". W Materials Science Forum, 71–78. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-408-1.71.
Pełny tekst źródłaChen, Long-Qing. "Phase Equilibria of Single-Component Materials". W Thermodynamic Equilibrium and Stability of Materials, 297–332. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-13-8691-6_11.
Pełny tekst źródłaStangle, Gregory C. "Balance equations for a single-phase material". W Modelling of Materials Processing, 93–198. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5813-2_3.
Pełny tekst źródłaKabanov, V. V. "From Single Polaron to Short Scale Phase Separation". W Polarons in Advanced Materials, 373–90. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6348-0_9.
Pełny tekst źródłaGrimes, Roger, R. J. Dashwood, A. Dorban, M. Jackson, S. Katsas, I. Pong i G. Todd. "Development of Superplastic Properties in Quasi Single Phase Alloys". W Superplasticity in Advanced Materials, 357–64. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-435-9.357.
Pełny tekst źródłaStreszczenia konferencji na temat "Single Phase Multiferroic Materials"
DeGiorgi, Virginia G., Peter Finkel, Lauren Garten i Margo Staruch. "Transduction Using Functional Materials: Basic Science and Understanding at the U. S. Naval Research Laboratory". W ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5501.
Pełny tekst źródłaSanchez, D., N. Ortega, R. S. Katiyar, Ashok Kumar i J. F. Scott. "Room temperature novel multiferroic single phase materials: (PbFe0.5Ta0.5O3)x-(PbZr0.53Ti0.47O3)(1−x)". W 2012 Joint 21st IEEE ISAF / 11th IEEE ECAPD / IEEE PFM (ISAF/ECAPD/PFM). IEEE, 2012. http://dx.doi.org/10.1109/isaf.2012.6297747.
Pełny tekst źródłaTripathy, A., K. Gautam, K. Dey, A. Ahad, I. A. Gudim, V. G. Sathe i D. K. Shukla. "Dielectric and Raman spectroscopy measurements across structural phase transition in multiferroic HoFe3(BO3)4 single crystal". W PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5130272.
Pełny tekst źródłaDadami, Sunanda T., Shidaling Matteppanvar, Shivaraja I., Sudhindra Rayaprol, S. K. Deshpande i Basavaraj Angadi. "Single phase Pb0.7Bi0.3Fe0.65Nb0.35O3 multiferroic: Neutron diffraction, impedance and modulus studies". W DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029132.
Pełny tekst źródłaSuresh, Pittala, i S. Srinath. "Effect of synthesis route on the multiferroic properties of single phase BiFeO3". W SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4873059.
Pełny tekst źródłaDadami, Sunanda T., Sudhindra Rayaprol, S. K. Deshpande i Basavaraj Angadi. "Single phase synthesis, neutron diffraction and dielectric studies on 0.6PbFe0.5Nb0.5O3-0.4BiFeO3 multiferroic". W DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113400.
Pełny tekst źródłaNikitin, A. A., A. B. Ustinov, A. A. Semenov, O. V. Pakhomov i E. Lahderanta. "Thin-film multiferroic phase shifter based on a slot transmission line". W 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). IEEE, 2014. http://dx.doi.org/10.1109/metamaterials.2014.6948653.
Pełny tekst źródłaSreenivasu, T., K. S. K. R. Chandra Sekhar, Anantharao Paila, B. Suryanarayana, K. Chandra Mouli, J. Praveen Kumar i Patri Tirupathi. "Observation of dielectric anomalies at magnetic phase transitions in 0.5(BiFeO3)0.5(Ba0.9Sr0.1TiO3) multiferroic ceramic". W INTERNATIONAL CONFERENCE ON MULTIFUNCTIONAL MATERIALS (ICMM-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0019499.
Pełny tekst źródłaChauhan, Sunil, Manoj Kumar, Himanshu Pandey i Mohit Sahni. "Room temperature multiferroic properties of rapid liquid phase sintered Pb+2 doped bismuth ferrite". W NATIONAL CONFERENCE ON ADVANCED MATERIALS AND NANOTECHNOLOGY - 2018: AMN-2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5052074.
Pełny tekst źródłaRaevski, I. P., S. P. Kubrin, S. I. Raevskaya, S. A. Prosandeev, M. A. Malitskaya, Yu N. Zakharov, A. G. Lutokhin i in. "The effect of A-site and B-site ion substitutions on the temperatures of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Nb0.5O3". W Nanoscale Phenomena in Polar Materials. IEEE, 2011. http://dx.doi.org/10.1109/isaf.2011.6014097.
Pełny tekst źródłaRaporty organizacyjne na temat "Single Phase Multiferroic Materials"
Torres, Marissa, Michael-Angelo Lam i Matt Malej. Practical guidance for numerical modeling in FUNWAVE-TVD. Engineer Research and Development Center (U.S.), październik 2022. http://dx.doi.org/10.21079/11681/45641.
Pełny tekst źródłaSchiller, Brandon, Tara Hutchinson i Kelly Cobeen. Cripple Wall Small-Component Test Program: Wet Specimens I (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/dqhf2112.
Pełny tekst źródłaL51599 The Significance of Local Hard Zones on Outside of Girth Welds. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), lipiec 1989. http://dx.doi.org/10.55274/r0010097.
Pełny tekst źródła