Gotowa bibliografia na temat „Single Molecule Fluorescence Resonance Energy Transfer (smFRET)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Single Molecule Fluorescence Resonance Energy Transfer (smFRET)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Single Molecule Fluorescence Resonance Energy Transfer (smFRET)"
Yang, Ziyu, Haiqi Xu, Jiayu Wang, Wei Chen i Meiping Zhao. "Single-Molecule Fluorescence Techniques for Membrane Protein Dynamics Analysis". Applied Spectroscopy 75, nr 5 (20.04.2021): 491–505. http://dx.doi.org/10.1177/00037028211009973.
Pełny tekst źródłaSengupta, Bhaswati, i Mai Huynh. "Contribution of smFRET to Chromatin Research". Biophysica 3, nr 1 (8.02.2023): 93–108. http://dx.doi.org/10.3390/biophysica3010007.
Pełny tekst źródłaLeBlanc, Sharonda, Prakash Kulkarni i Keith Weninger. "Single Molecule FRET: A Powerful Tool to Study Intrinsically Disordered Proteins". Biomolecules 8, nr 4 (8.11.2018): 140. http://dx.doi.org/10.3390/biom8040140.
Pełny tekst źródłaLi, Maodong, Tanlin Sun, Fan Jin, Daqi Yu i Zhirong Liu. "Dimension conversion and scaling of disordered protein chains". Molecular BioSystems 12, nr 9 (2016): 2932–40. http://dx.doi.org/10.1039/c6mb00415f.
Pełny tekst źródłaYukhnovets, Olessya, Henning Höfig, Nuno Bustorff, Alexandros Katranidis i Jörg Fitter. "Impact of Molecule Concentration, Diffusion Rates and Surface Passivation on Single-Molecule Fluorescence Studies in Solution". Biomolecules 12, nr 3 (18.03.2022): 468. http://dx.doi.org/10.3390/biom12030468.
Pełny tekst źródłaHu, Jinyong, Meiyan Wu, Li Jiang, Zhensheng Zhong, Zhangkai Zhou, Thitima Rujiralai i Jie Ma. "Combining gold nanoparticle antennas with single-molecule fluorescence resonance energy transfer (smFRET) to study DNA hairpin dynamics". Nanoscale 10, nr 14 (2018): 6611–19. http://dx.doi.org/10.1039/c7nr08397a.
Pełny tekst źródłaGirodat, Dylan, Avik K. Pati, Daniel S. Terry, Scott C. Blanchard i Karissa Y. Sanbonmatsu. "Quantitative comparison between sub-millisecond time resolution single-molecule FRET measurements and 10-second molecular simulations of a biosensor protein". PLOS Computational Biology 16, nr 11 (5.11.2020): e1008293. http://dx.doi.org/10.1371/journal.pcbi.1008293.
Pełny tekst źródłaYang, Jie, Sarah Perrett i Si Wu. "Single Molecule Characterization of Amyloid Oligomers". Molecules 26, nr 4 (11.02.2021): 948. http://dx.doi.org/10.3390/molecules26040948.
Pełny tekst źródłaVerma, Awadhesh Kumar, Ashab Noumani, Amit K. Yadav i Pratima R. Solanki. "FRET Based Biosensor: Principle Applications Recent Advances and Challenges". Diagnostics 13, nr 8 (8.04.2023): 1375. http://dx.doi.org/10.3390/diagnostics13081375.
Pełny tekst źródłaDurham, Ryan J., Nabina Paudyal, Elisa Carrillo, Nidhi Kaur Bhatia, David M. Maclean, Vladimir Berka, Drew M. Dolino, Alemayehu A. Gorfe i Vasanthi Jayaraman. "Conformational spread and dynamics in allostery of NMDA receptors". Proceedings of the National Academy of Sciences 117, nr 7 (3.02.2020): 3839–47. http://dx.doi.org/10.1073/pnas.1910950117.
Pełny tekst źródłaRozprawy doktorskie na temat "Single Molecule Fluorescence Resonance Energy Transfer (smFRET)"
Wallace, Mark Ian. "A study of DNA conformational dynamics using single-molecule fluorescence resonance energy transfer". Thesis, University of Cambridge, 2001. https://www.repository.cam.ac.uk/handle/1810/251799.
Pełny tekst źródłaSchuler, Benjamin, Everett A. Lipman, Peter J. Steinbach, Michael Kumke i William A. Eaton. "Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence". Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2007/1222/.
Pełny tekst źródłaUphoff, Stephan. "Studying protein-DNA interactions in vitro and in vivo using single-molecule photoswitching". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:d0a52864-6d26-44a4-8fb7-5d12624a04ba.
Pełny tekst źródłaBrehove, Matthew Steven. "Access to the Genome: A Study of Transcription Factor Binding Within Nucleosomes". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480603783786784.
Pełny tekst źródłaPérez, González Daniel Cibrán. "Single-molecule studies of nucleic acid folding and nucleic acid-protein interactions". Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/12039.
Pełny tekst źródłaQureshi, Mohammad Haroon. "Replication Protein A Mediated G-Quadruplex Unfolding - A Single Molecule FRET Study". Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1385984615.
Pełny tekst źródłaHwang, William Liang. "The Mechanism and Regulation of Chromatin Remodeling by ISWI Family Enzymes". Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10947.
Pełny tekst źródłaPiguet, Joachim. "Advanced Fluorescence Microscopy to Study Plasma Membrane Protein Dynamics". Doctoral thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-178147.
Pełny tekst źródłaQC 20151217
Valeri, Alessandro [Verfasser]. "Fluorescence resonance energy transfer between multiple chromophores studied by single-molecule spectroscopy / Alessandro Valeri". 2010. http://d-nb.info/1000132781/34.
Pełny tekst źródłaHuang, Yun-Tzu, i 黃蘊慈. "Distance Variations between Active Sites of H+-pyrophosphatase Determined by Single Molecule Fluorescence Resonance Energy Transfer". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/86183766690838245647.
Pełny tekst źródła國立清華大學
生物資訊與結構生物研究所
98
Homodimeric H+-pyrophosphatase (H+-PPase; EC 3.6.1.1) is a unique enzyme playing a pivotal physiological role in pH homeostasis of organisms. This novel enzyme supplies energy at expense of hydrolyzing metabolic byproduct, pyrophosphate (PPi), for H+ translocation across membrane. The functional unit of a monomer suffices for enzymatic reaction of H+-PPase, while that for the translocation is homodimer. Its active site on each subunit consists of PPi binding motif, Acidic I and II motifs, and several essential residues. In this investigation, structural mapping of these vital regions was primarily determined utilizing single molecule fluorescence resonance energy transfer. Distances between two C termini and also two N termini on homodimeric subunits of H+-PPase are 49.3 ± 4.0 Å and 67.2 ± 5.7 Å, respectively. Furthermore, putative PPi binding motifs on individual subunits are found to be relatively far away from each other (70.8 ± 4.8 Å), while binding of potassium and substrate analogue led them to closer proximity (56.6 ± 4.1 Å). Moreover, substrate analogue but not potassium elicits significantly distance variations between two Acidic I motifs and two H622 residues on homodimeric subunits. Taken together, this study provides the first quantitative measurements of distances between various essential motifs, residues and putative active sites on homodimeric subunits of H+-PPase. A working model is accordingly proposed elucidating the distance variations of dimeric H+-PPase upon substrate binding.
Książki na temat "Single Molecule Fluorescence Resonance Energy Transfer (smFRET)"
service), ScienceDirect (Online, red. Single molecule tools: Super-resolution, particle tracking, multiparameter and force based methods. San Diego, CA: Academic Press/Elsevier, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Single Molecule Fluorescence Resonance Energy Transfer (smFRET)"
Johnson-Buck, Alexander E., Mario R. Blanco i Nils G. Walter. "Single-Molecule Fluorescence Resonance Energy Transfer". W Encyclopedia of Biophysics, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35943-9_492-1.
Pełny tekst źródłaJohnson-Buck, Alexander E., Mario R. Blanco i Nils G. Walter. "Single-Molecule Fluorescence Resonance Energy Transfer". W Encyclopedia of Biophysics, 2329–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_492.
Pełny tekst źródłaLu, Ying, Jianbing Ma i Ming Li. "Single-Molecule Biosensing by Fluorescence Resonance Energy Transfer". W Single-Molecule Tools for Bioanalysis, 79–120. Boca Raton: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003189138-3.
Pełny tekst źródłaSpenkuch, Felix, Olwen Domingo, Gerald Hinze, Thomas Basché i Mark Helm. "Studying RNA Using Single Molecule Fluorescence Resonance Energy Transfer". W Handbook of RNA Biochemistry, 499–526. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527647064.ch24.
Pełny tekst źródłaFagerburg, Matt V., i Sanford H. Leuba. "Optimal Practices for Surface-Tethered Single Molecule Total Internal Reflection Fluorescence Resonance Energy Transfer Analysis". W DNA Nanotechnology, 273–89. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-142-0_19.
Pełny tekst źródłaMacDougall, Daniel D., i Ruben L. Gonzalez. "Exploring the structural dynamics of the translational machinery using single-molecule fluorescence resonance energy transfer". W Ribosomes, 273–93. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0215-2_22.
Pełny tekst źródłaChoi, Ucheor B., Keith R. Weninger i Mark E. Bowen. "Immobilization of Proteins for Single-Molecule Fluorescence Resonance Energy Transfer Measurements of Conformation and Dynamics". W Intrinsically Disordered Protein Analysis, 3–20. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3704-8_1.
Pełny tekst źródłaAndreou, Alexandra Z., i Dagmar Klostermeier. "Conformational Changes of DEAD-Box Helicases Monitored by Single Molecule Fluorescence Resonance Energy Transfer". W Methods in Enzymology, 75–109. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-396546-2.00004-8.
Pełny tekst źródłaHan, Jun, Erwen Mei, Mei-Ping Kung, Hank F. Kung, Jian-Min Yuan i Hai-Lung Dai. "Single-Molecule Fluorescence Resonance Energy Transfer Studies of β-Amyloid Clusters in Physiological Solutions". W Biophysics and Biochemistry of Protein Aggregation, 297–311. World Scientific, 2017. http://dx.doi.org/10.1142/9789813202382_0008.
Pełny tekst źródłaGreenfeld, Max, i Daniel Herschlag. "Measuring the Energetic Coupling of Tertiary Contacts in RNA Folding using Single Molecule Fluorescence Resonance Energy Transfer". W Methods in Enzymology, 205–20. Elsevier, 2010. http://dx.doi.org/10.1016/s0076-6879(10)72009-7.
Pełny tekst źródłaStreszczenia konferencji na temat "Single Molecule Fluorescence Resonance Energy Transfer (smFRET)"
Ernst, S., B. Verhalen, N. Zarrabi, S. Wilkens i M. Börsch. "Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer". W SPIE BiOS, redaktorzy Ammasi Periasamy, Karsten König i Peter T. C. So. SPIE, 2011. http://dx.doi.org/10.1117/12.872989.
Pełny tekst źródłaCotlet, Mircea, Tom Vosch, Sadahiro Masuo, Marcus Sauer, Klaus Muellen, Johan Hofkens i Frans De Schryver. "Single-molecule spectroscopy to probe competitive fluorescence resonance energy transfer pathways in bichromophoric synthetic systems". W Biomedical Optics 2004, redaktorzy Dan V. Nicolau, Joerg Enderlein, Robert C. Leif i Daniel L. Farkas. SPIE, 2004. http://dx.doi.org/10.1117/12.531322.
Pełny tekst źródłaFore, Samantha, Thomas Huser, Yin Yuen i Lambertus Hesselink. "Single Molecule Pulsed Interleaved Excitation Fluorescence Resonance Energy Transfer (PIE-FRET) inside Nanometer-scale Apertures at Biologically Relevant Concentration". W CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4453191.
Pełny tekst źródłaYeh, Hsin-Chih, Christopher M. Puleo, Yi-Ping Ho i Tza-Huei Wang. "Towards Single-Molecule Diagnostics Using Microfluidic Manipulation and Quantum Dot Nanosensors". W ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2007. http://dx.doi.org/10.1115/icnmm2007-30213.
Pełny tekst źródłaTsourkas, Andrew, Jason Xu i Gang Bao. "Hybridization Dynamics and Kinetics of Fret-Enhanced Molecular Beacons". W ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/bed-23163.
Pełny tekst źródła