Artykuły w czasopismach na temat „Single-Electron physics”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Single-Electron physics.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Single-Electron physics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Osborne, I. S. "APPLIED PHYSICS: Single-Electron Shuttle". Science 293, nr 5535 (31.08.2001): 1559b—1559. http://dx.doi.org/10.1126/science.293.5535.1559b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

KASTNER, M. A. "THE PHYSICS OF SINGLE ELECTRON TRANSISTORS". International Journal of High Speed Electronics and Systems 12, nr 04 (grudzień 2002): 1101–33. http://dx.doi.org/10.1142/s0129156402001940.

Pełny tekst źródła
Streszczenie:
The single electron transistor (SET) is a nanometer-size device that turns on and off again every time one electron is added to it. In this article, the physics of the SET is reviewed. The consequences of confining electrons to a small region of space are that both the charge and energy are quantized. We review how the charge states and energy states of the confined electrons, sometimes called an artificial atom, are measured, and how the precision of these measurements depends on temperature. We also discuss the coupling of electrons inside the artificial atom to those in the leads of the SET, which results in the Kondo effect. We review measurements of the Kondo effect, which demonstrate that the Anderson Hamiltonian provides a quantitative description of the SET.
Style APA, Harvard, Vancouver, ISO itp.
3

Kastner, M. A., i D. Goldhaber-Gordon. "Kondo physics with single electron transistors". Solid State Communications 119, nr 4-5 (lipiec 2001): 245–52. http://dx.doi.org/10.1016/s0038-1098(01)00106-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kobayashi, Shun-ichi. "Fundamental Physics of Single Electron Transport". Japanese Journal of Applied Physics 36, Part 1, No. 6B (30.06.1997): 3956–59. http://dx.doi.org/10.1143/jjap.36.3956.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Dempsey, Kari J., David Ciudad i Christopher H. Marrows. "Single electron spintronics". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, nr 1948 (13.08.2011): 3150–74. http://dx.doi.org/10.1098/rsta.2011.0105.

Pełny tekst źródła
Streszczenie:
Single electron electronics is now well developed, and allows the manipulation of electrons one-by-one as they tunnel on and off a nanoscale conducting island. In the past decade or so, there have been concerted efforts in several laboratories to construct single electron devices incorporating ferromagnetic components in order to introduce spin functionality. The use of ferromagnetic electrodes with a non-magnetic island can lead to spin accumulation on the island. On the other hand, making the dot also ferromagnetic introduces new physics such as tunnelling magnetoresistance enhancement in the cotunnelling regime and manifestations of the Kondo effect. Such nanoscale islands are also found to have long spin lifetimes. Conventional spintronics makes use of the average spin-polarization of a large ensemble of electrons: this new approach offers the prospect of accessing the quantum properties of the electron, and is a candidate approach to the construction of solid-state spin-based qubits.
Style APA, Harvard, Vancouver, ISO itp.
6

Seneor, Pierre, Anne Bernand-Mantel i Frédéric Petroff. "Nanospintronics: when spintronics meets single electron physics". Journal of Physics: Condensed Matter 19, nr 16 (5.04.2007): 165222. http://dx.doi.org/10.1088/0953-8984/19/16/165222.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Devoret, Michel H., i Christian Glattli. "Single-electron transistors". Physics World 11, nr 9 (wrzesień 1998): 29–34. http://dx.doi.org/10.1088/2058-7058/11/9/26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Jamshidnezhad, K., i M. J. Sharifi. "Physics-based analytical model for ferromagnetic single electron transistor". Journal of Applied Physics 121, nr 11 (21.03.2017): 113905. http://dx.doi.org/10.1063/1.4978425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Seike, Kohei, Yasushi Kanai, Yasuhide Ohno, Kenzo Maehashi, Koichi Inoue i Kazuhiko Matsumoto. "Carbon nanotube single-electron transistors with single-electron charge storages". Japanese Journal of Applied Physics 54, nr 6S1 (24.04.2015): 06FF05. http://dx.doi.org/10.7567/jjap.54.06ff05.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wu Fan i Wang Tai-Hong. "Single-electron control by single-electron pump and its stability diagrams". Acta Physica Sinica 52, nr 3 (2003): 696. http://dx.doi.org/10.7498/aps.52.696.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Ginzburg, L. P. "Single-electron Schrödinger equation for many-electron systems". Theoretical and Mathematical Physics 121, nr 3 (grudzień 1999): 1641–53. http://dx.doi.org/10.1007/bf02557209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Apell, P., i A. Tagliacozzo. "Single Electron Tunneling". physica status solidi (b) 145, nr 2 (1.02.1988): 483–91. http://dx.doi.org/10.1002/pssb.2221450213.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Gurvitz, Shmuel. "Single-electron approach for time-dependent electron transport". Physica Scripta T165 (1.10.2015): 014013. http://dx.doi.org/10.1088/0031-8949/2015/t165/014013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Nagase, Masao, Seiji Horiguchi, Akira Fujiwara i Yasuo Takahashi. "Microscopic Observations of Single-Electron Island in Si Single-Electron Transistors". Japanese Journal of Applied Physics 42, Part 1, No. 4B (30.04.2003): 2438–43. http://dx.doi.org/10.1143/jjap.42.2438.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Monreal, Benjamin. "Single-electron cyclotron radiation". Physics Today 69, nr 1 (styczeń 2016): 70–71. http://dx.doi.org/10.1063/pt.3.3060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Ji, Xiao-Fan, Zheng Xu, Shuo Cao, Kang-Sheng Qiu, Jing Tang, Xi-Tian Zhang i Xiu-Lai Xu. "Single-ZnO-Nanobelt-Based Single-Electron Transistors". Chinese Physics Letters 31, nr 6 (czerwiec 2014): 067303. http://dx.doi.org/10.1088/0256-307x/31/6/067303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Yano, Kazuo, i David K. Ferry. "Single-electron solitons". Superlattices and Microstructures 11, nr 1 (styczeń 1992): 61–64. http://dx.doi.org/10.1016/0749-6036(92)90362-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

AKAMINE, Yuta, Kazuto FUJIWARA, Bokulae CHO i Chuhei OSHIMA. "New Phenomena in Physics Related with Single-Atom Electron Sources". Journal of the Vacuum Society of Japan 55, nr 2 (2012): 59–63. http://dx.doi.org/10.3131/jvsj2.55.59.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Wingreen, N. S. "PHYSICS: Quantum Many-Body Effects in a Single-Electron Transistor". Science 304, nr 5675 (28.05.2004): 1258–59. http://dx.doi.org/10.1126/science.1098302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Nordlander, Peter, Ned S. Wingreen, Yigal Meir i David C. Langreth. "Kondo physics in the single-electron transistor with ac driving". Physical Review B 61, nr 3 (15.01.2000): 2146–50. http://dx.doi.org/10.1103/physrevb.61.2146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Tanttu, Tuomo, Alessandro Rossi, Kuan Yen Tan, Kukka-Emilia Huhtinen, Kok Wai Chan, Mikko Möttönen i Andrew S. Dzurak. "Electron counting in a silicon single-electron pump". New Journal of Physics 17, nr 10 (16.10.2015): 103030. http://dx.doi.org/10.1088/1367-2630/17/10/103030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Kauppinen, J. P., i J. P. Pekola. "Hot electron effects in metallic single electron components". Czechoslovak Journal of Physics 46, S4 (kwiecień 1996): 2295–96. http://dx.doi.org/10.1007/bf02571139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Takahashi, Yasuo, Yukinori Ono, Akira Fujiwara i Hiroshi Inokawa. "Silicon single-electron devices". Journal of Physics: Condensed Matter 14, nr 39 (20.09.2002): R995—R1033. http://dx.doi.org/10.1088/0953-8984/14/39/201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Kim, Sang Jin, Yukinori Ono, Yasuo Takahashi i Jung Bum Choi. "Real-Time Observation of Single-Electron Movement through Silicon Single-Electron Transistor". Japanese Journal of Applied Physics 43, nr 10 (8.10.2004): 6863–67. http://dx.doi.org/10.1143/jjap.43.6863.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Boese, D., i H. Schoeller. "Influence of nanomechanical properties on single-electron tunneling: A vibrating single-electron transistor". Europhysics Letters (EPL) 54, nr 5 (czerwiec 2001): 668–74. http://dx.doi.org/10.1209/epl/i2001-00367-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Sui Bing-Cai, Fang Liang i Zhang Chao. "Conductance of single-electron transistor with single island". Acta Physica Sinica 60, nr 7 (2011): 077302. http://dx.doi.org/10.7498/aps.60.077302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Wang, Y., D. MacKernan, D. Cubero, D. F. Coker i N. Quirke. "Single electron states in polyethylene". Journal of Chemical Physics 140, nr 15 (21.04.2014): 154902. http://dx.doi.org/10.1063/1.4869831.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Matsutani, Masahiro, Fujio Wakaya, Sadao Takaoka, Kazuo Murase i Kenji Gamo. "Electron-Beam-Induced Oxidation for Single-Electron Devices". Japanese Journal of Applied Physics 36, Part 1, No. 12B (30.12.1997): 7782–85. http://dx.doi.org/10.1143/jjap.36.7782.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Nishiguchi, Norihiko. "Electron transport properties of C60 single electron transistor". Physica E: Low-dimensional Systems and Nanostructures 18, nr 1-3 (maj 2003): 247–48. http://dx.doi.org/10.1016/s1386-9477(02)01000-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Ciccarello, F., G. M. Palma, M. Zarcone, Y. Omar i V. R. Vieira. "Entanglement controlled single-electron transmittivity". New Journal of Physics 8, nr 9 (27.09.2006): 214. http://dx.doi.org/10.1088/1367-2630/8/9/214.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Dasenbrook, David, Joseph Bowles, Jonatan Bohr Brask, Patrick P. Hofer, Christian Flindt i Nicolas Brunner. "Single-electron entanglement and nonlocality". New Journal of Physics 18, nr 4 (26.04.2016): 043036. http://dx.doi.org/10.1088/1367-2630/18/4/043036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Bushev, P. A., J. H. Cole, D. Sholokhov, N. Kukharchyk i M. Zych. "Single electron relativistic clock interferometer". New Journal of Physics 18, nr 9 (27.09.2016): 093050. http://dx.doi.org/10.1088/1367-2630/18/9/093050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Dubas, L. G. "Single-component relativistic electron flux". Technical Physics Letters 32, nr 6 (czerwiec 2006): 527–28. http://dx.doi.org/10.1134/s106378500606023x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Jeong, Moon-Young, Yoon-Ha Jeong, Sung-Woo Hwang i Dae M. Kim. "Performance of Single-Electron Transistor Logic Composed of Multi-gate Single-Electron Transistors". Japanese Journal of Applied Physics 36, Part 1, No. 11 (15.11.1997): 6706–10. http://dx.doi.org/10.1143/jjap.36.6706.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Chen, Wei. "Fabrication and physics of 2 nm islands for single electron devices". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, nr 6 (listopad 1995): 2883. http://dx.doi.org/10.1116/1.588310.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Jia, Zhaosai, Hailong Wang, Chuanhe Ma, Xin Cao i Qian Gong. "Electron–electron scattering rate in CdTe/CdMnTe single quantum well". International Journal of Modern Physics B 35, nr 21 (31.07.2021): 2150221. http://dx.doi.org/10.1142/s0217979221502210.

Pełny tekst źródła
Streszczenie:
CdMnTe is demonstrated to be a good candidate in the X-ray and [Formula: see text]-ray detector application, however, there are few reports on theoretical analysis of electron scattering rate in CdMnTe quantum well. Within the framework of effective mass approximation and envelope function approximation, the influence of the Mn alloy composition ([Formula: see text], the well width ([Formula: see text], the electron temperature ([Formula: see text] and the electron density ([Formula: see text] on the electron–electron scattering rate (1/[Formula: see text] in the CdTe/Cd[Formula: see text]Mn[Formula: see text]Te single quantum well (SQW), are simulated by shooting method and Fermi’s Golden Rule. The results show that 1/[Formula: see text] is significant inverse proportional to [Formula: see text], but positively proportional to [Formula: see text] and [Formula: see text]. Except for a small peak at 20 K, 1/[Formula: see text] is not sensitive to [Formula: see text]. The above differential dependency of 1/[Formula: see text] on [Formula: see text] and [Formula: see text] can be interpreted by sub-band separation ([Formula: see text], which is proportional to [Formula: see text] but inversely proportional to [Formula: see text]. When [Formula: see text] decreases gradually, the electron transition becomes easier, which leads to 1/[Formula: see text] increases. The dependency of 1/[Formula: see text] on [Formula: see text] can be interpreted by kinetic energy of electrons. The larger the electron kinetic energy is, the more difficult the electron transition from first excited state to ground state is, which leads to 1/[Formula: see text] decreasing. The dependency of 1/[Formula: see text] on [Formula: see text] can be interpreted by the Coulomb interaction between electrons, i.e., the increase of electron collision probability caused by the increase of [Formula: see text].
Style APA, Harvard, Vancouver, ISO itp.
37

Thelander, Claes, Henrik A. Nilsson, Linus E. Jensen i Lars Samuelson. "Nanowire Single-Electron Memory". Nano Letters 5, nr 4 (kwiecień 2005): 635–38. http://dx.doi.org/10.1021/nl050006s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Rafiq, M. A., Z. A. K. Durrani, H. Mizuta, A. Colli, P. Servati, A. C. Ferrari, W. I. Milne i S. Oda. "Room temperature single electron charging in single silicon nanochains". Journal of Applied Physics 103, nr 5 (marzec 2008): 053705. http://dx.doi.org/10.1063/1.2887988.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Hasko, D. G., T. Ferrus, Q. R. Morrissey, S. R. Burge, E. J. Freeman, M. J. French, A. Lam i in. "Single shot measurement of a silicon single electron transistor". Applied Physics Letters 93, nr 19 (10.11.2008): 192116. http://dx.doi.org/10.1063/1.3028344.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Kubatkin, Sergey, Andrey Danilov, Mattias Hjort, Jérôme Cornil, Jean-Luc Brédas, Nicolai Stuhr-Hansen, Per Hedegård i Thomas Bjørnholm. "Single electron transistor with a single conjugated molecule". Current Applied Physics 4, nr 5 (sierpień 2004): 554–58. http://dx.doi.org/10.1016/j.cap.2004.01.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Matheoud, Alessandro V., Nergiz Sahin i Giovanni Boero. "A single chip electron spin resonance detector based on a single high electron mobility transistor". Journal of Magnetic Resonance 294 (wrzesień 2018): 59–70. http://dx.doi.org/10.1016/j.jmr.2018.07.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Hwang, Sung Woo, Toshitsugu Sakamoto i Kazuo Nakamura. "Single Electron Digital Phase Modulator". Japanese Journal of Applied Physics 34, Part 1, No. 1 (15.01.1995): 83–84. http://dx.doi.org/10.1143/jjap.34.83.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Akazawa, Masamichi, i Yoshihito Amemiya. "Directional Single-Electron-Tunneling Junction". Japanese Journal of Applied Physics 35, Part 1, No. 6A (15.06.1996): 3569–75. http://dx.doi.org/10.1143/jjap.35.3569.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Kirihara, Masaharu, i Kenji Taniguchi. "A Single Electron Neuron Device". Japanese Journal of Applied Physics 36, Part 1, No. 6B (30.06.1997): 4172–75. http://dx.doi.org/10.1143/jjap.36.4172.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

von Borczyskowski, C., J. Köhler, W. E. Moerner, M. Orrit i J. Wrachtrup. "Single-molecule electron spin resonance". Applied Magnetic Resonance 31, nr 3-4 (wrzesień 2007): 665–76. http://dx.doi.org/10.1007/bf03166609.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

So, Hye-Mi, Jinhee Kim, Wan Soo Yun, Jong Wan Park, Ju-Jin Kim, Do-Jae Won, Yongku Kang i Changjin Lee. "Molecule-based single electron transistor". Physica E: Low-dimensional Systems and Nanostructures 18, nr 1-3 (maj 2003): 243–44. http://dx.doi.org/10.1016/s1386-9477(02)00996-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Abramov, I. I., i E. G. Novik. "Classification of single-electron devices". Semiconductors 33, nr 11 (listopad 1999): 1254–59. http://dx.doi.org/10.1134/1.1187860.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Yu, Yun Seop, Seung Hun Son, Hee Tae Kim, Yong Gyu Kim, Jung Hyun Oh, Hanjung Kim, Sung Woo Hwang, Bum Ho Choi i Doyeol Ahn. "Transmission-Type Radio-Frequency Single-Electron Transistor with In-Plane-Gate Single-Electron Transistor". Japanese Journal of Applied Physics 46, nr 4B (24.04.2007): 2592–95. http://dx.doi.org/10.1143/jjap.46.2592.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Fernández-Rossier, J., R. Aguado i L. Brey. "Anisotropic magnetoresistance in single electron transport". physica status solidi (c) 3, nr 12 (grudzień 2006): 4231–34. http://dx.doi.org/10.1002/pssc.200672837.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Speirs, Rory W., Corey T. Putkunz, Andrew J. McCulloch, Keith A. Nugent, Benjamin M. Sparkes i Robert E. Scholten. "Single-shot electron diffraction using a cold atom electron source". Journal of Physics B: Atomic, Molecular and Optical Physics 48, nr 21 (23.09.2015): 214002. http://dx.doi.org/10.1088/0953-4075/48/21/214002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii