Gotowa bibliografia na temat „Single and Multiple Change Point Detection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Single and Multiple Change Point Detection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Single and Multiple Change Point Detection"
Qi, Jin Peng, Fang Pu, Ying Zhu i Ping Zhang. "A Weighted Error Distance Metrics (WEDM) for Performance Evaluation on Multiple Change-Point (MCP) Detection in Synthetic Time Series". Computational Intelligence and Neuroscience 2022 (24.03.2022): 1–17. http://dx.doi.org/10.1155/2022/6187110.
Pełny tekst źródłaLi, Zhaoyuan, i Maozai Tian. "Detecting Change-Point via Saddlepoint Approximations". Journal of Systems Science and Information 5, nr 1 (8.06.2017): 48–73. http://dx.doi.org/10.21078/jssi-2017-048-26.
Pełny tekst źródłaSingh, Uday Pratap, i Ashok Kumar Mittal. "Testing reliability of the spatial Hurst exponent method for detecting a change point". Journal of Water and Climate Change 12, nr 8 (1.10.2021): 3661–74. http://dx.doi.org/10.2166/wcc.2021.097.
Pełny tekst źródłaHe, Youxi, Zhenhong Jia, Jie Yang i Nikola K. Kasabov. "Multispectral Image Change Detection Based on Single-Band Slow Feature Analysis". Remote Sensing 13, nr 15 (28.07.2021): 2969. http://dx.doi.org/10.3390/rs13152969.
Pełny tekst źródłaPillow, Jonathan W., Yashar Ahmadian i Liam Paninski. "Model-Based Decoding, Information Estimation, and Change-Point Detection Techniques for Multineuron Spike Trains". Neural Computation 23, nr 1 (styczeń 2011): 1–45. http://dx.doi.org/10.1162/neco_a_00058.
Pełny tekst źródłaYang, Chong, Yu Fu, Jianmin Yuan, Min Guo, Keyu Yan, Huan Liu, Hong Miao i Changchun Zhu. "Damage Identification by Using a Self-Synchronizing Multipoint Laser Doppler Vibrometer". Shock and Vibration 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/476054.
Pełny tekst źródłaR. Almaddah, Amr Reda, Tauseef Ahmad i Abdullah Dubai. "Detection and Measurement of Displacement and Velocity of Single Moving Object in a Stationary Background". Sir Syed University Research Journal of Engineering & Technology 7, nr 1 (19.12.2018): 6. http://dx.doi.org/10.33317/ssurj.v7i1.41.
Pełny tekst źródłaR. Almaddah, Amr Reda, Tauseef Ahmad i Abdullah Dubai. "Detection and Measurement of Displacement and Velocity of Single Moving Object in a Stationary Background". Sir Syed University Research Journal of Engineering & Technology 7, nr 1 (19.12.2018): 6. http://dx.doi.org/10.33317/ssurj.41.
Pełny tekst źródłaTanaka, Kanji. "Fault-Diagnosing Deep-Visual-SLAM for 3D Change Object Detection". Journal of Advanced Computational Intelligence and Intelligent Informatics 25, nr 3 (20.05.2021): 356–64. http://dx.doi.org/10.20965/jaciii.2021.p0356.
Pełny tekst źródłaR. Almaddah, Amr Reda, Tauseef Ahmad i Abdullah Dubai. "5 Detection and Measurement of Displacement and Velocity of Single Moving Object in a Stationary Background". Sir Syed Research Journal of Engineering & Technology 1, nr 1 (19.12.2018): 6. http://dx.doi.org/10.33317/ssurj.v1i1.41.
Pełny tekst źródłaRozprawy doktorskie na temat "Single and Multiple Change Point Detection"
Shabarshova, Liudmila. "Geometric functional pruning for change point detection in low-dimensional exponential family models". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM026.
Pełny tekst źródłaChange point detection is a common unsupervised learning problem in many application areas, especially in biology, genomics, sensor network monitoring, and cyber-security. Typically, either a posteriori change detection, i.e. offline, or sequential change detection, i.e. online, is considered.Standard dynamic programming methods for change point detection have been proposed to optimise either the likelihood or the log-likelihood ratio of a change point model. These methods are exact and recover optimal segmentations. However, they have quadratic complexity. Continuously reducing the set of potential change point candidates, called pruning, is a way to reduce the computational complexity of standard dynamic programming methods. Over the last decade, a new class of dynamic programming methods, called functional pruning, has been proposed. The functional pruning techniques used in these methods have already proved to be computationally efficient for univariate parametric change point models. Extending univariate functional pruning rules to multivariate settings is difficult if we aim for the most efficient pruning. It leads to non-convex optimisation problems.This thesis introduces two novel, computationally efficient, functional pruning dynamic programming methods for the detection of change points in low-dimensional exponential family models: the offline multiple change point detection method, GeomFPOP (Kmax = ∞), and the online single change point detection method, MdFOCuS.Computational geometry is the basis of the functional pruning rules for these methods. The pruning rule of GeomFPOP (Kmax = ∞) uses a geometric heuristic to update and prune potential change point candidates over time. The pruning rule of MdFOCuS uses a connection to a convex hull problem that simplifies the search for change point location to be pruned. Further we mathematically demonstrate that this pruning technique leads to a quasi-linear runtime complexity.These two pruning rules show significant improvements in computational complexity for low-dimensional exponential family models in simulation studies. In one minute, the Rcpp implementations of these methods can process more than 2 × 106 observations in a bivariate signal without change with i.i.d. Gaussian noise
Niu, Yue S., Ning Hao i Heping Zhang. "Multiple Change-Point Detection: A Selective Overview". INST MATHEMATICAL STATISTICS, 2016. http://hdl.handle.net/10150/622820.
Pełny tekst źródłaHunter, Brandon. "Channel Probing for an Indoor Wireless Communications Channel". BYU ScholarsArchive, 2003. https://scholarsarchive.byu.edu/etd/64.
Pełny tekst źródła"A composite likelihood-based approach for multiple change-point detection in multivariate time series models". 2014. http://repository.lib.cuhk.edu.hk/en/item/cuhk-1291459.
Pełny tekst źródła本論文目的為開發一套以複合似然為基礎的多變點估計方法,該方法可應用於一般多變量時間序列模型。具體而言,我們在最小描述長度原理及成對似然的基礎上推導出一個準則函數,用於估計變化點的數量及位置,並在各段進行模型選擇。憑藉成對似然,在適當條件下變點的數量和位置可以一致地估計。透過使用修剪動態規劃算法,相關的運算能有效地進行。模擬研究及真實數據實例都演示出該方法在統計及運算效率。
Ma, Ting Fung.
Thesis M.Phil. Chinese University of Hong Kong 2014.
Includes bibliographical references (leaves 51-54).
Abstracts also in Chinese.
Title from PDF title page (viewed on 05, October, 2016).
Detailed summary in vernacular field only.
Książki na temat "Single and Multiple Change Point Detection"
Wright, A. G. The Photomultiplier Handbook. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.001.0001.
Pełny tekst źródłaOakes, Lisa M., i David H. Rakison. Developmental Cascades. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780195391893.001.0001.
Pełny tekst źródłaCzęści książek na temat "Single and Multiple Change Point Detection"
Priyadarshana, Madawa, Tatiana Polushina i Georgy Sofronov. "Hybrid Algorithms for Multiple Change-Point Detection in Biological Sequences". W Signal and Image Analysis for Biomedical and Life Sciences, 41–61. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10984-8_3.
Pełny tekst źródłaWu, Yanhong. "Sequential change point detection and estimation for multiple alternative hypothesis1". W Systems modelling and optimization, 345–53. Boca Raton: Routledge, 2022. http://dx.doi.org/10.1201/9780203737422-43.
Pełny tekst źródłaAkbari, Shagufta, i M. Janga Reddy. "Detecting Changes in Regional Rainfall Series in India Using Binary Segmentation-Based Multiple Change-Point Detection Techniques". W Climate Change Impacts, 103–16. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5714-4_8.
Pełny tekst źródłaOke, Masahiro, i Hideyuki Kawashima. "A Multiple Query Optimization Scheme for Change Point Detection on Stream Processing System". W Lecture Notes in Business Information Processing, 150–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46839-5_10.
Pełny tekst źródłaRigaill, G., E. Lebarbier i S. Robin. "Exact Posterior Distributions over the Segmentation Space and Model Selection for Multiple Change-Point Detection Problems". W Proceedings of COMPSTAT'2010, 557–64. Heidelberg: Physica-Verlag HD, 2010. http://dx.doi.org/10.1007/978-3-7908-2604-3_57.
Pełny tekst źródłaQian, Lianfen, i Wei Zhang. "Multiple Change-Point Detection in Piecewise Exponential Hazard Regression Models with Long-Term Survivors and Right Censoring". W Contemporary Developments in Statistical Theory, 289–304. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02651-0_18.
Pełny tekst źródłaQuoc Tran, Dai, Yuntae Jeon, Seongwoo Son, Minsoo Park i Seunghee Park. "Identifying Hazards in Construction Sites Using Deep Learning-Based Multimodal with CCTV Data". W CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality, 625–33. Florence: Firenze University Press, 2023. http://dx.doi.org/10.36253/10.36253/979-12-215-0289-3.61.
Pełny tekst źródłaQuoc Tran, Dai, Yuntae Jeon, Seongwoo Son, Minsoo Park i Seunghee Park. "Identifying Hazards in Construction Sites Using Deep Learning-Based Multimodal with CCTV Data". W CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality, 625–33. Florence: Firenze University Press, 2023. http://dx.doi.org/10.36253/979-12-215-0289-3.61.
Pełny tekst źródłaGoossens, Alexandre, Johannes De Smedt, Jan Vanthienen i Wil M. P. van der Aalst. "Enhancing Data-Awareness of Object-Centric Event Logs". W Lecture Notes in Business Information Processing, 18–30. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27815-0_2.
Pełny tekst źródłaFernández, Néstor, Simon Ferrier, Laetitia M. Navarro i Henrique M. Pereira. "Essential Biodiversity Variables: Integrating In-Situ Observations and Remote Sensing Through Modeling". W Remote Sensing of Plant Biodiversity, 485–501. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33157-3_18.
Pełny tekst źródłaStreszczenia konferencji na temat "Single and Multiple Change Point Detection"
Sedighi Maman, Zahra, Amir Baghdadi, Fadel Megahed i Lora Cavuoto. "Monitoring and Change Point Estimation of Normal (In-Control) and Fatigued (Out-of-Control) State in Workers". W ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60487.
Pełny tekst źródłaRoy, Arjun, Sangeeta Nundy, Okja Kim i Godine Chan. "Emission Source Detection and Leak Rate Estimation Using Point Measurements of Concentration". W International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22377-ea.
Pełny tekst źródłaMata, Jose, Zunerge Guevara, Luis Quintero, Carlos Vasquez, Hernando Trujillo, Alberto Muñoz i Jorge Falla. "Combination of New Acoustic and Electromagnetic Frequency Technologies Detects Leaks Behind Multiple Casings. Case History". W SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206383-ms.
Pełny tekst źródłaZhang, Wenyu, Nicholas A. James i David S. Matteson. "Pruning and Nonparametric Multiple Change Point Detection". W 2017 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2017. http://dx.doi.org/10.1109/icdmw.2017.44.
Pełny tekst źródłaChalise, Batu K., Jahi Douglas i Kevin T. Wagner. "Multiple Change Point Detection-based Target Detection in Clutter". W 2023 IEEE Radar Conference (RadarConf23). IEEE, 2023. http://dx.doi.org/10.1109/radarconf2351548.2023.10149616.
Pełny tekst źródłaHalme, Topi, Eyal Nitzan, H. Vincent Poor i Visa Koivunen. "Bayesian Multiple Change-Point Detection with Limited Communication". W ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053654.
Pełny tekst źródłaHalme, Topi, Eyal Nitzan i Visa Koivunen. "Bayesian Multiple Change-Point Detection of Propagating Events". W ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021. http://dx.doi.org/10.1109/icassp39728.2021.9413434.
Pełny tekst źródłaNitzan, Eyal, Topi Halme, H. Vincent Poor i Visa Koivunen. "Deterministic Multiple Change-Point Detection with Limited Communication". W 2020 54th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2020. http://dx.doi.org/10.1109/ciss48834.2020.1570627514.
Pełny tekst źródłaBarooah, Abinash, Muhammad Saad Khan, Hicham Ferroudji, Mohammad Azizur Rahman, Rashid Hassan, Ibrahim Hassan, Ahmad K. Sleiti, Sina Rezaei Gomari i Matthew Hamilton. "Investigation of Multiphase Flow Leak Detection in Pipeline Using Time Series Analysis Technique". W ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/omae2024-127882.
Pełny tekst źródłaNath, Samrat, i Jingxian Wu. "BAYESIAN QUICKEST CHANGE POINT DETECTION WITH MULTIPLE CANDIDATES OF POST-CHANGE MODELS". W 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2018. http://dx.doi.org/10.1109/globalsip.2018.8646596.
Pełny tekst źródłaRaporty organizacyjne na temat "Single and Multiple Change Point Detection"
Belkin, Shimshon, Sylvia Daunert i Mona Wells. Whole-Cell Biosensor Panel for Agricultural Endocrine Disruptors. United States Department of Agriculture, grudzień 2010. http://dx.doi.org/10.32747/2010.7696542.bard.
Pełny tekst źródłaBurns, Malcom, i Gavin Nixon. Literature review on analytical methods for the detection of precision bred products. Food Standards Agency, wrzesień 2023. http://dx.doi.org/10.46756/sci.fsa.ney927.
Pełny tekst źródłaBotulinum Neurotoxin-Producing Clostridia, Working Group on. Report on Botulinum Neurotoxin-Producing Clostridia. Food Standards Agency, sierpień 2023. http://dx.doi.org/10.46756/sci.fsa.ozk974.
Pełny tekst źródłaLey, Matt, Tom Baldvins, Hannah Pilkington, David Jones i Kelly Anderson. Vegetation classification and mapping project: Big Thicket National Preserve. National Park Service, 2024. http://dx.doi.org/10.36967/2299254.
Pełny tekst źródła