Gotowa bibliografia na temat „Single and Multi-junction Solar Cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Single and Multi-junction Solar Cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Single and Multi-junction Solar Cells"
Yamaguchi, Masafumi, Frank Dimroth, Nicholas J. Ekins-Daukes, Nobuaki Kojima i Yoshio Ohshita. "Overview and loss analysis of III–V single-junction and multi-junction solar cells". EPJ Photovoltaics 13 (2022): 22. http://dx.doi.org/10.1051/epjpv/2022020.
Pełny tekst źródłaKim, Chae-Won, Gwang-Yeol Park, Jae-Cheol Shin i Hyo-Jin Kim. "Efficiency Enhancement of GaAs Single-Junction Solar Cell by Nanotextured Window Layer". Applied Sciences 12, nr 2 (8.01.2022): 601. http://dx.doi.org/10.3390/app12020601.
Pełny tekst źródłaMintairov, M. A., V. V. Evstropov, S. A. Mintairov, M. Z. Shvarts i N. A. Kalyuzhnyy. "Series spreading resistance in single- and multi-junction concentrator solar cells". Journal of Physics: Conference Series 1038 (czerwiec 2018): 012105. http://dx.doi.org/10.1088/1742-6596/1038/1/012105.
Pełny tekst źródłaThon, Susanna Mitrani, Arlene Chiu, Yida Lin, Hoon Jeong Lee, Sreyas Chintapalli i Botong Qiu. "(Keynote) New Materials and Spectroscopies for Colloidal Quantum Dot Solar Cells". ECS Meeting Abstracts MA2022-02, nr 20 (9.10.2022): 918. http://dx.doi.org/10.1149/ma2022-0220918mtgabs.
Pełny tekst źródłaMOUSLI, L., B. DENNAI i B. AZEDDINE. "THEORETICAL SIMULATION OF THE EFFECT OF TEMPERATURE OF MULTI-JUNCTION SOLAR CELLS (PIN/ InGaN)". Journal of Ovonic Research 17, nr 1 (styczeń 2021): 11–21. http://dx.doi.org/10.15251/jor.2021.171.11.
Pełny tekst źródłaKrotkus, A., I. Nevinskas, R. Norkus, A. Geižutis, V. Strazdienė, V. Pačebutas i T. Paulauskas. "Terahertz photocurrent spectrum analysis of AlGaAs/GaAs/GaAsBi multi-junction solar cells". Journal of Physics D: Applied Physics 56, nr 35 (2.06.2023): 355109. http://dx.doi.org/10.1088/1361-6463/acd85d.
Pełny tekst źródłaSöderström, Karin, Grégory Bugnon, Franz-Josef Haug i Christophe Ballif. "Electrically flat/optically rough substrates for efficiencies above 10% in n-i-p thin-film silicon solar cells". MRS Proceedings 1426 (2012): 39–44. http://dx.doi.org/10.1557/opl.2012.835.
Pełny tekst źródłaRajpal, Bindiya, Shringar Gupta, Shivani Saxena, Shalini Jharia i Gaurav Saxena. "Single Junction and Dual Junction Thin Film Solar Cells". International Journal of Engineering Trends and Technology 45, nr 6 (25.03.2017): 246–50. http://dx.doi.org/10.14445/22315381/ijett-v45p251.
Pełny tekst źródłaSmirnov, V., F. Urbain, A. Lambertz i F. Finger. "High Stabilized Efficiency Single and Multi-junction Thin Film Silicon Solar Cells". Energy Procedia 102 (grudzień 2016): 64–69. http://dx.doi.org/10.1016/j.egypro.2016.11.319.
Pełny tekst źródłaIsabella, O., S. Solntsev, D. Caratelli i M. Zeman. "3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings". MRS Proceedings 1426 (2012): 149–54. http://dx.doi.org/10.1557/opl.2012.897.
Pełny tekst źródłaRozprawy doktorskie na temat "Single and Multi-junction Solar Cells"
Shim, Jae Won. "Study of charge-collecting interlayers for single-junction and tandem organic solar cells". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51820.
Pełny tekst źródłaLynch, Marianne Catherine. "Modelling and optimisation of single junction strain balanced quantum well solar cells". Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/8479.
Pełny tekst źródłaMahajumi, Abu Syed. "Type-II gallium antimonide quantum dots in gallium arsenide single junction solar cells". Thesis, Lancaster University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658211.
Pełny tekst źródłaZhang, Haoquan S. M. Massachusetts Institute of Technology. "An integrated multi-input single-output buck converter for laterally-arrayed multi-bandgap solar cells". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121745.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 151-156).
Concentrated Photovoltaic (CPV) systems provides a potentially low-cost and high-efficiency alternative to conventional mono-crystalline Si panel PV systems, and a new CPV system with Laterally-Arrayed Multi-Bandgap (LAMB) cells is introduced. In this thesis, an IC-based Multi-Input Single-Output (MISO) power converter, which serves as the small-footprint and self-powered power management module of the CPV system, is designed and tested. The proposed converter shall efficiently harvest energy from 4 types of solar cells and track the Maximum Power Point (MPP) at the cell-block level. First, the circuit topology, MPP Tracking (MPPT) algorithm, and control mechanism are verified with discrete converters, then a qualitative demonstration is conducted outdoors to show the concept of the entire CPV system with power management. Finally, a first-generation integrated converter, with the passive components, Analog/Digital converters and a MPPT-enabling micro-controller off-chip, is implemented.
by Haoquan Zhang.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Fifer, Tommy L. "Radiation effects on multi-junction solar cells". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2001. http://handle.dtic.mil/100.2/ADA401081.
Pełny tekst źródłaThesis advisor(s): Michael, Sherif . "December 2001." Includes bibliographical references (p. 65-67). Also available online.
Mantilla, Pérez Paola. "Multi-junction thin film solar cells for an optimal light harvesting". Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/406044.
Pełny tekst źródłaLa fotovoltaica de capa delgada engloba un grupo de tecnologías capaces de capturar la luz en tan sólo unos pocos nanómetros de espesor. Su bajo costo de manufactura, flexibilidad y bajo peso, hace a las capas delgadas candidatas ideales para la integración en edificios. En particular, las celdas orgánicas pueden proveer una transparencia de alta calidad similar a las ventanas convencionales irrealizable con tecnologías basadas en Silicio. Sin embargo, para la producción de electricidad a gran escala en donde la eficiencia es, tal vez, el factor determinante, existen nuevas tecnologías como las celdas solares de perovskita que pueden resultar más adecuadas. Al momento de escribir esta tesis, las eficiencias de celdas de perovskita de simple unión casi duplican la de las mejores celdas orgánicas de simple unión. Una limitante de ambas tecnologías, en especial de las celdas orgánicas y en menor medida de las perovskitas, es la baja movilidad de las cargas. Esta, junto a otras desventajas de los absorbentes orgánicos y perovskitas limita su espesor al rango de los 100 a los 130 nm, y entre los 500 a 600 nm, respectivamente. En resumen, el manejo de la luz debe constituir un ingrediente esencial para el diseño de los dispositivos, tal que se consiga un desempeño óptimo en la aplicación para la cual sean considerados. En esta tesis, con el fin de alcanzar un aprovechamiento óptimo de la luz y por ende aumentar el desempeño de las celdas solares de capa delgada, utilizamos dos enfoques. Por un lado, aumentamos el espesor total de material absorbente dentro del dispositivo sin incrementar el espesor de las capas actives individuales y por otro lado, combinamos absorbentes complementarios para cubrir una porción más amplia del espectro solar. Estos enfoques conllevan al doble reto de encontrar la distribución de campo electromagnético óptima dentro de una estructura compleja de multicapas con dos o más capas activas, junto a la implementación de una recolección o recombinación de cargas efectiva por parte de las capas intermedias encargadas de conectar dos subceldas adyacentes. En el caso de las celdas orgánicas, consideramos celdas de multiunión usando el mismo material activo para todas las subceldas. Para implementarlas, se realizan estructuras cuyas capas activas no excedan los 100 nm. También estudiamos configuraciones donde los materiales tienen absorciones complementarias usando perovskitas. En ambos casos, sobretodo en el primero, se requiere un método sistemático para optimizar el aprovechamiento de la luz. Para obtener las configuraciones óptimas empleamos una estrategia de integración inversa junto con un cálculo del campo eléctrico basado en el modelo de matriz de transferencia. Además, desarrollamos nuevas estrategias para optimizar la colección de cargas en las capas de interconexión de las subceldas aplicables a dispositivos tipo tandem, triple, 4-terminales y serie-paralelo.
Kolhatkar, Gitanjali. "Characterisation of high-efficiency multi-junction solar cells and tunnel junctions". Thesis, University of Ottawa (Canada), 2011. http://hdl.handle.net/10393/28939.
Pełny tekst źródłaWalker, Alexandre W. "Bandgap Engineering of Multi-Junction Solar Cells for Enhanced Performance Under Concentration". Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26240.
Pełny tekst źródłaJudkins, Zachara Steele. "A market analysis for high efficiency multi-junction solar cells grown on SiGe". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42143.
Pełny tekst źródłaIncludes bibliographical references (leaves 50-53).
Applications, markets and a cost model are presented for III-V multi-junction solar cells built on compositionally graded SiGe buffer layers currently being developed by professors Steven Ringell of Ohio State University and Eugene Fitzgerald of MIT. Potential markets are similar to those currently occupied by high efficiency multi-junction space solar cells grown on a Germanium substrate. Initial cost analysis shows that at production volumes similar to those of the state of the art, cost could be reduced by a factor of' four. Significant market share may be gained in both the space and terrestrial PV markets due to improved performance associated with superior materials properties advantages as well as production cost reductions.
by Zachary Steele Judkins.
M.Eng.
Korostyshevsky, Aaron. "Characterization of Radiation Damage in Multi-Junction Solar Cells Using Light-Biased Current Measurements". Connect to full text in OhioLINK ETD Center, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=toledo1224614484.
Pełny tekst źródłaTypescript. "Submitted as partial fulfillments of the requirements for the Master of Science Degree in Physics." "A thesis entitled"--at head of title. Bibliography: leaves 41-42.
Książki na temat "Single and Multi-junction Solar Cells"
F, Hepp Aloysius, i NASA Glenn Research Center, red. Multi-junction thin-film solar cells on flexible substrates for space power. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Znajdź pełny tekst źródłaF, Hepp Aloysius, i NASA Glenn Research Center, red. Multi-junction thin-film solar cells on flexible substrates for space power. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Znajdź pełny tekst źródłaF, Hepp Aloysius, i NASA Glenn Research Center, red. Multi-junction thin-film solar cells on flexible substrates for space power. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Znajdź pełny tekst źródłaYeh, Chune-Sin. An expert system approach to the optimal design of single-junction and multijunction tandem solar cells. 1988.
Znajdź pełny tekst źródłaWolf, E. L. Solar Cell Physics and Technologies. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198769804.003.0010.
Pełny tekst źródłaRadiation Effects on Multi-Junction Solar Cells. Storming Media, 2001.
Znajdź pełny tekst źródłaMulti-junction thin-film solar cells on flexible substrates for space power. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Znajdź pełny tekst źródłaNational Aeronautics and Space Administration (NASA) Staff. Multi-Junction Thin-Film Solar Cells on Flexible Substrates for Space Power. Independently Published, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Single and Multi-junction Solar Cells"
Zhang, Chunfu, Jincheng Zhang, Xiaohua Ma i Qian Feng. "High-Efficiency III-V Single-Junction and Multi-junction Solar Cells". W Semiconductor Photovoltaic Cells, 127–75. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_4.
Pełny tekst źródłaGrover, Sachit, i Garret Moddel. "Metal Single-Insulator and Multi-Insulator Diodes for Rectenna Solar Cells". W Rectenna Solar Cells, 89–109. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_5.
Pełny tekst źródłaYuan, Yujie, Guofu Hou, Junming Xue, Jianjun Zhang, Xiaoyan Han, Yunzhou Liu, Ying Zhao i Xinhua Geng. "Hydrogenated Microcrystalline Silicon Single-Junction Nip Solar Cells". W Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 1247–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_251.
Pełny tekst źródłaNomoto, Katsuhiko, i Takashi Tomita. "Development of Amorphous-Silicon Single-Junction Solar Cells and Their Application Systems". W Springer Series in Photonics, 105–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10549-8_6.
Pełny tekst źródłaAhmad, Khursheed, i Qazi Mohd Suhail. "Multi-junction Polymer Solar Cells". W Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1817–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-36268-3_196.
Pełny tekst źródłaHeidler, K., i B. Müller-Bierl. "Measurement of Multi-Junction Solar Cells". W Tenth E.C. Photovoltaic Solar Energy Conference, 111–14. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_29.
Pełny tekst źródłaAli, Khuram, Afifa Khalid, Muhammad Raza Ahmad, Hasan M. Khan, Irshad Ali i S. K. Sharma. "Multi-junction (III–V) Solar Cells: From Basics to Advanced Materials Choices". W Solar Cells, 325–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36354-3_13.
Pełny tekst źródłaDimroth, Frank. "III-V Solar Cells - Materials, Multi-Junction Cells - Cell Design and Performance". W Photovoltaic Solar Energy, 371–82. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118927496.ch34.
Pełny tekst źródłaDiedenhofen, Silke L., Gabriele Vecchi, Gerard Bauhuis i Jaime Gómez Rivas. "Broadband and Omnidirectional Anti-reflection Coating for III/V Multi-junction Solar Cells". W High-Efficiency Solar Cells, 571–95. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01988-8_19.
Pełny tekst źródłaAhmad, Khursheed, i Qazi Mohd Suhail. "Multi-Junction Polymer Solar Cells: Recent Trends and Challenges". W Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1–18. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-11155-7_196-1.
Pełny tekst źródłaStreszczenia konferencji na temat "Single and Multi-junction Solar Cells"
Wilson, Tom, Tomos Thomas, Markus Führer, Nicholas J. Ekins-Daukes, Radek Roucka, Andrew Clark, Andrew Johnson, Rick Hoffman i David Begarney. "Single and multi-junction solar cells utilizing a 1.0 eV SiGeSn junction". W 12TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-12). Author(s), 2016. http://dx.doi.org/10.1063/1.4962096.
Pełny tekst źródłaLorentzen, Justin, David Scheiman, Woojun Yoon, Robert Walters i Phillip Jenkins. "Photoluminescence Imaging and Characterization of Single and Multi-Junction Solar Cells". W 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300495.
Pełny tekst źródłaSnaith, Henry. "Improving efficiency and stability in single and multi-junction perovskite solar cells". W 2nd Asia-Pacific Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.ap-hopv.2018.076.
Pełny tekst źródłaEkins-Daukes, Nicholas J., Anastasia Soeriyadi, Wenqi Zhao, Stephen Bremner i Andreas Pusch. "Loss analysis for single junction concentrator solar cells". W 14TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-14). Author(s), 2018. http://dx.doi.org/10.1063/1.5053511.
Pełny tekst źródłaZhang, Suoliang, Lei Liu, Yongqing Wang, Tianshu Zhang i Zhipeng Zhang. "Single light path quantum efficiency measurement system used for multi-junction solar cells". W Instruments (ICEMI). IEEE, 2009. http://dx.doi.org/10.1109/icemi.2009.5274586.
Pełny tekst źródłaKurtz, Sarah R. "Implications of light management in single- and multi-junction solar cells (Conference Presentation)". W Women in Renewable Energy (WiRE), redaktorzy Monica Lira-Cantu i Zakya H. Kafafi. SPIE, 2019. http://dx.doi.org/10.1117/12.2530811.
Pełny tekst źródłaMaros, Aymeric, Srikanth Gangam, Yi Fang, Justin Smith, Dragica Vasileska, Stephen Goodnick, Mariana I. Bertoni i Christiana B. Honsberg. "High temperature characterization of GaAs single junction solar cells". W 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7356338.
Pełny tekst źródłaFaruque, M. A., Rezwan Ahmed, M. H. Rahat i Khairul Alam. "Comparative Performance Analysis Between CIGS Single-Junction and CIGS Tandem Multi-Junction Solar Cell". W 2018 10th International Conference on Electrical and Computer Engineering (ICECE). IEEE, 2018. http://dx.doi.org/10.1109/icece.2018.8636746.
Pełny tekst źródłaHong Zhu i S. J. Fonash. "Study of buffer layer design in single junction solar cells". W Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996. IEEE, 1996. http://dx.doi.org/10.1109/pvsc.1996.564322.
Pełny tekst źródłaBolink, Henk. "Vapor Phase Deposited Single Junction and Tandem Perovskite Solar Cells." W 11th International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.hopv.2019.019.
Pełny tekst źródłaRaporty organizacyjne na temat "Single and Multi-junction Solar Cells"
Starkenburg, Daken, Asmerom Weldeab, Danielle Fagnani, Lei Li, Zhengtao Xu, Xiaoyang Yan, Michael Sexton, Davita Watkins, Ronald Castellano i Jiangeng Xue. Final Scientific/Technical Report -- Single-Junction Organic Solar Cells with >15% Efficiency. Office of Scientific and Technical Information (OSTI), maj 2018. http://dx.doi.org/10.2172/1435607.
Pełny tekst źródłaCarlson, D., R. Ayra, M. Bennett, J. Brewer, A. Catalano, R. D'Aiello, C. Dickson i in. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells. Office of Scientific and Technical Information (OSTI), wrzesień 1989. http://dx.doi.org/10.2172/5434340.
Pełny tekst źródłaCatalano, A., D. Carlson, R. Ayra, M. Bennett, R. D'Aiello, C. Dickson, C. Fortmann i in. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells. Office of Scientific and Technical Information (OSTI), październik 1989. http://dx.doi.org/10.2172/5496057.
Pełny tekst źródłaAyra, R., M. Bennett, C. Dickson, B. Fieselmann, C. Fortmann, B. Goldstein, J. Morris i in. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells. Office of Scientific and Technical Information (OSTI), październik 1989. http://dx.doi.org/10.2172/5383673.
Pełny tekst źródłaWiesmann, H., J. Dolan, G. Fricano i V. Danginis. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells: Annual subcontract report, May 1985 - Jul 1986. Office of Scientific and Technical Information (OSTI), luty 1987. http://dx.doi.org/10.2172/6587080.
Pełny tekst źródłaDelahoy, A. E., E. Eser, F. Kampas i R. Lenskold. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells: Final report, October 1, 1983--January 31, 1987. Office of Scientific and Technical Information (OSTI), marzec 1989. http://dx.doi.org/10.2172/6304136.
Pełny tekst źródłaAshton, G., F. Aspen, K. Epstein, R. Jacobson, F. Jeffrey, R. Patel i J. Shirck. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells. Annual report, 1 December 1983-30 November 1984. Office of Scientific and Technical Information (OSTI), kwiecień 1985. http://dx.doi.org/10.2172/5586079.
Pełny tekst źródłaAshton, G., F. Aspen, R. Jacobson, F. Jeffrey i N. Tran. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells. Semiannual subcontract progress report, 1 December 1984-31 May 1985. Office of Scientific and Technical Information (OSTI), styczeń 1986. http://dx.doi.org/10.2172/6103083.
Pełny tekst źródłaDelahoy, A., F. Ellis, Jr., E. Eser, H. Volltrauer i H. Weakliem. Research on high-efficiency, single-junction, monolithic thin-film amorphous silicon solar cells. Semiannual subcontract progress report, 1 October 1984-31 March 1985. Office of Scientific and Technical Information (OSTI), listopad 1985. http://dx.doi.org/10.2172/6315679.
Pełny tekst źródłaCarlson, D., A. Catalano, R. D'Aiello, C. Dickson i R. Oswald. Research on high-efficiency, single-junction, monolithic, thin-film a-Si solar cells. Annual subcontract progress report, 1 February 1984-31 January 1985. Office of Scientific and Technical Information (OSTI), listopad 1985. http://dx.doi.org/10.2172/6315691.
Pełny tekst źródła