Gotowa bibliografia na temat „Simulations rotor”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Simulations rotor”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Simulations rotor"
Fu, Ping, Hong Lei Zhang i Chuan Sheng Wang. "Finite-Element Analysis of Rotor in the Rubber Continuous Plasticator". Key Engineering Materials 561 (lipiec 2013): 174–77. http://dx.doi.org/10.4028/www.scientific.net/kem.561.174.
Pełny tekst źródłaPacholczyk, Michał, i Dariusz Karkosiński. "Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine". Energies 13, nr 15 (29.07.2020): 3880. http://dx.doi.org/10.3390/en13153880.
Pełny tekst źródłaHuang, Yong Yu, Qiu Yun Mo, Xu Zhang i Zu Peng Zhou. "Numerical Simulations of Spherical Vertical-Axis Wind Rotor". Applied Mechanics and Materials 291-294 (luty 2013): 456–60. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.456.
Pełny tekst źródłaMao, Xiaochen, i Bo Liu. "Numerical investigation of tip clearance size effect on the performance and tip leakage flow in a dual-stage counter-rotating axial compressor". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231, nr 3 (15.02.2017): 474–84. http://dx.doi.org/10.1177/0954410016638878.
Pełny tekst źródłaFletcher, T. M., i R. E. Brown. "Modelling the interaction of helicopter main rotor and tail rotor wakes". Aeronautical Journal 111, nr 1124 (październik 2007): 637–43. http://dx.doi.org/10.1017/s0001924000004814.
Pełny tekst źródłaLei, Yao, i Rongzhao Lin. "Effect of wind disturbance on the aerodynamic performance of coaxial rotors during hovering". Measurement and Control 52, nr 5-6 (25.04.2019): 665–74. http://dx.doi.org/10.1177/0020294019834961.
Pełny tekst źródłaLei, Yao, Yiqiang Ye i Zhiyong Chen. "Horizontal Wind Effect on the Aerodynamic Performance of Coaxial Tri-Rotor MAV". Applied Sciences 10, nr 23 (1.12.2020): 8612. http://dx.doi.org/10.3390/app10238612.
Pełny tekst źródłaSun, Zhenye, Wei Jun Zhu, Wen Zhong Shen, Wei Zhong, Jiufa Cao i Qiuhan Tao. "Aerodynamic Analysis of Coning Effects on the DTU 10 MW Wind Turbine Rotor". Energies 13, nr 21 (3.11.2020): 5753. http://dx.doi.org/10.3390/en13215753.
Pełny tekst źródłaBenti, Gudeta Berhanu, Rolf Gustavsson i Jan-Olov Aidanpää. "Speed-Dependent Bearing Models for Dynamic Simulations of Vertical Rotors". Machines 10, nr 7 (10.07.2022): 556. http://dx.doi.org/10.3390/machines10070556.
Pełny tekst źródłaLei, Yao, i Mingxin Cheng. "Aerodynamic performance of a Hex-rotor unmanned aerial vehicle with different rotor spacing". Measurement and Control 53, nr 3-4 (31.01.2020): 711–18. http://dx.doi.org/10.1177/0020294019901313.
Pełny tekst źródłaRozprawy doktorskie na temat "Simulations rotor"
Narejo, Abdul Ahad. "3D design and simulations of NASA rotor 67". Thesis, University West, Department of Engineering Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-814.
Pełny tekst źródłaIn this master\2019s thesis work, research has been carried out to develop an automated and parameterized programming model in Matlab to generate a standard journal file, which can read by Gambit and produce a meshed 2D and 3D blade. This file then can be exported into mesh-formatted file for fluent for further simulations and numerical results.
Roca, León Enric. "Simulations aéro-mécaniques pour l'optimisation de rotors d'hélicoptère en vol d'avancement". Thesis, Nice, 2014. http://www.theses.fr/2014NICE4076.
Pełny tekst źródłaThis work addresses the development of a multi-Objective optimization framework for helicopter rotor blades using high-Fidelity simulation models. In particular, objective functions corresponding to hover and forward flight are considered. Two solvers are used to predict the rotor performance: the comprehensive rotor code HOST and the Computational Fluid Dynamics (CFD) solver elsA. The first research axis of this work is the characterization of the accuracy of each available prediction method. The influence of considering the blade elasticity, the rotor trim and/or simplified aerodynamics is characterized for each flight case using wind-Tunnel data. As a result, a numerical framework adapted to the optimization is developed. The second part of this work concerns the formulation and development of techniques adapted to the multi-Objective optimization of rotor blades in hover and in forward flight. Innovative algorithms based on competition (Nash Games) and cooperation (Multi-Gradient Descent) are presented as alternatives to traditional multi-Objective approaches. In order to reduce the simulation costs, a surrogate-Based framework is developed, including a multi-Fidelity strategy to predict the rotor performance in forward flight. These techniques are finally applied to a realistic rotor, considering trimmed elastic CFD computations in the forward flight case and rigid blade CFD computations in the hover case. The results are subsequently analyzed, demonstrating the potential of these techniques to obtain realistic designs realizing interesting trade-Offs
Gupta, Vinit. "Quad tilt rotor simulations in helicopter mode using computational fluid dynamics". College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/3172.
Pełny tekst źródłaThesis research directed by: Aerospace Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Zhong, B. "Implicit multi-block Euler/Navier-Stokes simulations for hovering helicopter rotor". Thesis, Cranfield University, 2003. http://dspace.lib.cranfield.ac.uk/handle/1826/10754.
Pełny tekst źródłaZhong, Bowen. "Implicit multi-block Euler/Navier-Stokes simulations for hovering helicopter rotor". Thesis, Cranfield University, 2003. http://dspace.lib.cranfield.ac.uk/handle/1826/10754.
Pełny tekst źródłaJACQUES, REMI. "Simulations numeriques d'ecoulements transitionnels et turbulents dans des configurations de type rotor-stator". Paris 11, 1997. http://www.theses.fr/1997PA112386.
Pełny tekst źródłaParthasarathy, Nikhil Kaushik. "An efficient algorithm for blade loss simulations applied to a high-order rotor dynamics problem". Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/189.
Pełny tekst źródłaWells, Jesse Buchanan. "Effects of Turbulence Modeling on RANS Simulations of Tip Vortices". Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/34343.
Pełny tekst źródłaMaster of Science
Chatzisavvas, Ioannis [Verfasser], Bernhard [Akademischer Betreuer] Schweizer i Wolfgang [Akademischer Betreuer] Seemann. "Efficient Thermohydrodynamic Radial and Thrust Bearing Modeling for Transient Rotor Simulations / Ioannis Chatzisavvas ; Bernhard Schweizer, Wolfgang Seemann". Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2018. http://d-nb.info/116838088X/34.
Pełny tekst źródłaVerley, Simon. "Evaluation du couple "champ lointain" d'un rotor d'hélicoptère en vol stationnaire : analyse de résultats issus de simulations numériques de mécanique des fluides". Phd thesis, Université d'Orléans, 2012. http://tel.archives-ouvertes.fr/tel-00904918.
Pełny tekst źródłaKsiążki na temat "Simulations rotor"
Center, Ames Research, red. Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Znajdź pełny tekst źródłaCenter, Ames Research, red. Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Znajdź pełny tekst źródłaBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Znajdź pełny tekst źródłaBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. Cleveland, Ohio: Lewis Research Centre, 1990.
Znajdź pełny tekst źródłaLewis Research Center. Institute for Computational Mechanics in Propulsion., red. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Znajdź pełny tekst źródłaBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Znajdź pełny tekst źródłaBoretti, A. A. Two-dimensional Euler and Navier Stokes time accurate simulations of fan rotor flows. Cleveland, Ohio: NASA Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Znajdź pełny tekst źródłaBoretti, A. A. Two-dimensional Euler and Navier Stokes time accurate simulations of fan rotor flows. Cleveland, Ohio: NASA Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Znajdź pełny tekst źródła1950-, Hill Gary, i Ames Research Center, red. Comparisons of elastic and rigid blade-element rotor models using parallel processing technology for piloted simulations. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1991.
Znajdź pełny tekst źródłaP, Friedmann Peretz, i Ames Research Center, red. Aeroelastic simulation of higher harmonic control. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1994.
Znajdź pełny tekst źródłaCzęści książek na temat "Simulations rotor"
Neuhauser, Magdalena, Francis Leboeuf, Jean-Christophe Marongiu, Etienne Parkinson i Daniel Robb. "Simulations of Rotor–Stator Interactions with SPH-ALE". W Advances in Hydroinformatics, 349–61. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-42-0_29.
Pełny tekst źródłaSong, An, Xiang Luo, Zhongliang He i Jian He. "Numerical Investigation on Flow and Heat Transfer of a Rotor–Stator Cavity with Labyrinth Seal". W Computational and Experimental Simulations in Engineering, 797–814. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42515-8_56.
Pełny tekst źródłaHirose, Koichiro, Koji Fukudome i Makoto Yamamoto. "Three-Dimensional Simulation of Ice Crystal Trajectory with State Change Around Rotor Blade of Axial Fan". W Computational and Experimental Simulations in Engineering, 235–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67090-0_20.
Pełny tekst źródłaLandi, Giacomo, Travis Shive i Fabrizio Mandrile. "Rotor-Dynamic Computer Simulations of Rolling Bearing in High-Speed Rotating Machinery". W Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, 1889–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06590-8_156.
Pełny tekst źródłaMore, Shubhali, Amit Kumar i A. M. Pradeep. "Numerical Simulations on Performance of a Hybrid and a Tandem Rotor". W Proceedings of the National Aerospace Propulsion Conference, 15–33. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2378-4_2.
Pełny tekst źródłaGorasso, Luca, Liqin Wang i Chiara Gorasso. "Geometrical Optimization of Hydrodynamic Journal Bearings with Validated Simulations and Artificial Intelligence Tools". W Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, 1057–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06590-8_86.
Pełny tekst źródłaSurrey, S., J. H. Wendisch i F. Wienke. "Coupled Fluid-Structure Simulations of a Trimmed Helicopter Rotor in Forward Flight". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 359–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27279-5_32.
Pełny tekst źródłaGiangaspero, G., M. Almquist, K. Mattsson i E. van der Weide. "Unsteady Simulations of Rotor Stator Interactions Using SBP-SAT Schemes: Status and Challenges". W Lecture Notes in Computational Science and Engineering, 247–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19800-2_21.
Pełny tekst źródłaAbo-Serie, Essam, i Elif Oran. "Flow Simulation of a New Horizontal Axis Wind Turbine with Multiple Blades for Low Wind Speed". W Springer Proceedings in Energy, 93–106. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_10.
Pełny tekst źródłaSezer-Uzol, Nilay, Ankur Gupta i Lyle N. Long. "3-D Time-Accurate Inviscid and Viscous CFD Simulations of Wind Turbine Rotor Flow Fields". W Lecture Notes in Computational Science and Engineering, 457–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-92744-0_57.
Pełny tekst źródłaStreszczenia konferencji na temat "Simulations rotor"
Linton, Daniel, George Barakos, Ronny Widjaja i Ben Thornber. "A New Actuator Surface Model with Improved Wake Model for CFD Simulations of Rotorcraft". W Vertical Flight Society 73rd Annual Forum & Technology Display, 1–10. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-12010.
Pełny tekst źródłaGovindarajan, Bharath, i J. Leishman. "Predictions of Rotor and Rotor/Airframe Configurational Effects on Brownout Dust Clouds". W Vertical Flight Society 70th Annual Forum & Technology Display, 1–27. The Vertical Flight Society, 2014. http://dx.doi.org/10.4050/f-0070-2014-9599.
Pełny tekst źródłaSmith, Brendan, i Farhan Gandhi. "Quadcopter Noise Variation Due to Relative Rotor Phasing". W Vertical Flight Society 80th Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1335.
Pełny tekst źródłaCoder, James, i Norman Foster. "Structured, Overset Simulations for the 1st Rotor Hub Flow Workshop". W Vertical Flight Society 73rd Annual Forum & Technology Display, 1–10. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-11999.
Pełny tekst źródłaHeister, Christoph. "Approximate Transition Prediction for the ONERA 7AD Rotor in Forward Flight using a Structured and Unstructured U/RANS solver". W Vertical Flight Society 72nd Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11374.
Pełny tekst źródłaLienard, Caroline, Raphaël Fukari, Itham Salah i Thomas Renaud. "RACER high-speed demonstrator: Rotor and rotor-head wake interactions with tail unit". W Vertical Flight Society 80th Annual Forum & Technology Display, 1–13. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0074-2018-12699.
Pełny tekst źródłaMisiorowski, Matthew, Assad Oberai i Farhan Gandhi. "A Computational Study on Rotor Interactional Effects for a Quadcopter in Edgewise Flight". W Vertical Flight Society 80th Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0074-2018-12705.
Pełny tekst źródłaOrtun, Biel, Mark Potsdam, Khiem Truong i Hyeonsoo Yeo. "Rotor Loads Prediction on the ONERA 7A Rotor using Loose Fluid/Structure Coupling". W Vertical Flight Society 72nd Annual Forum & Technology Display, 1–21. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11370.
Pełny tekst źródłaZhao, Jinggen, i Chengjian He. "Real-Time Simulation of Coaxial Rotor Configurations with Combined Finite State Dynamic Wake and VPM". W Vertical Flight Society 70th Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2014. http://dx.doi.org/10.4050/f-0070-2014-9567.
Pełny tekst źródłaCoder, James, Philip Cross i Marilyn Smith. "Turbulence Modeling Strategies for Rotor Hub Flows". W Vertical Flight Society 73rd Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-11994.
Pełny tekst źródłaRaporty organizacyjne na temat "Simulations rotor"
Wenren, Yonghu, Joon Lim, Luke Allen, Robert Haehnel i Ian Dettwiler. Helicopter rotor blade planform optimization using parametric design and multi-objective genetic algorithm. Engineer Research and Development Center (U.S.), grudzień 2022. http://dx.doi.org/10.21079/11681/46261.
Pełny tekst źródłaRivera-Casillas, Peter, i Ian Dettwiller. Neural Ordinary Differential Equations for rotorcraft aerodynamics. Engineer Research and Development Center (U.S.), kwiecień 2024. http://dx.doi.org/10.21079/11681/48420.
Pełny tekst źródłaBlaylock, Myra L., David Charles Maniaci i Brian R. Resor. Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number. Office of Scientific and Technical Information (OSTI), kwiecień 2015. http://dx.doi.org/10.2172/1178361.
Pełny tekst źródłaChatagny, Laurent. PR-471-16206-R02 Suction Piping Effect on Pump Performance CFD. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzec 2019. http://dx.doi.org/10.55274/r0011562.
Pełny tekst źródłaAllen, Luke, Joon Lim, Robert Haehnel i Ian Dettwiller. Helicopter rotor blade multiple-section optimization with performance. Engineer Research and Development Center (U.S.), czerwiec 2021. http://dx.doi.org/10.21079/11681/41031.
Pełny tekst źródłaWissink, Andrew, Jude Dylan, Buvana Jayaraman, Beatrice Roget, Vinod Lakshminarayan, Jayanarayanan Sitaraman, Andrew Bauer, James Forsythe, Robert Trigg i Nicholas Peters. New capabilities in CREATE™-AV Helios Version 11. Engineer Research and Development Center (U.S.), czerwiec 2021. http://dx.doi.org/10.21079/11681/40883.
Pełny tekst źródłaAllen, Luke, Joon Lim, Robert Haehnel i Ian Detwiller. Rotor blade design framework for airfoil shape optimization with performance considerations. Engineer Research and Development Center (U.S.), czerwiec 2021. http://dx.doi.org/10.21079/11681/41037.
Pełny tekst źródłaYang, Cheng-I., Minyee Jiang, Christopher J. Chesnakas i Stuart D. Jessup. Numerical Simulation of Tip Vortices of a Ducted Rotor. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2004. http://dx.doi.org/10.21236/ada426510.
Pełny tekst źródłaCarico, Dean, i Singli Garcia-Otero. Tilt Rotor Aircraft Modeling Using a Generic Simulation Structure,. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1995. http://dx.doi.org/10.21236/ada305253.
Pełny tekst źródłaMittal, Rajat. Large-Eddy Simulation of the Tip-Flow of a Rotor in Hover. Fort Belvoir, VA: Defense Technical Information Center, październik 2005. http://dx.doi.org/10.21236/ada440555.
Pełny tekst źródła