Rozprawy doktorskie na temat „Silver Sulfide Quantum Dots”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Silver Sulfide Quantum Dots”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Raevskaya, Alexandra, Oksana Rozovik, Anastasiya Novikova, Oleksandr Selyshchev, Oleksandr Stroyuk, Volodymyr Dzhagan, Irina Goryacheva, Nikolai Gaponik, Dietrich R. T. Zahn i Alexander Eychmüller. "Luminescence and photoelectrochemical properties of size-selected aqueous copper-doped Ag–In–S quantum dots". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-235077.
Pełny tekst źródłaDEL, GOBBO SILVANO. "Cadmium sulfide quantum dots: growth and optical properties". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/873.
Pełny tekst źródłaIn recent years, there has been a rapid development of the growth techniques of nanostructured materials, and a particular breakthrough was given by the introduction of colloidal growth techniques. These techniques allow to grow by affordable facilities, a wide range of nanostructured materials, metals and semiconductors, with high crystallinity, reduced size, narrow size distribution. Nanostructured cadmium sulfide (CdS) has promising future applications as in the realization of optoelectronic devices, high efficiency solar cells as well as fluorescent biological probe. However, in order to fully exploit the potential technological applications, the study of the physical properties of such materials is of crucial importance. In this thesis, the optoelectronic and optovibrational properties of cadmium sulfide quantum dots (QDs) grown by colloidal chemical method are studied. By the means of colloidal growth, it is possible to grow QDs with reduced size and narrow size distribution. The synthesis of CdS-QDs consists in the thermolysis (T=260 °C) of cadmium stearate in presence of hydrogen sulfide in a high temperature boiling point solvent (1-octadecene). The growth rate and final QDs size are regulated by the presence of the surfactating molecule trioctylphosphine oxide (TOPO). QDs with a determined size and a narrow size distribution can be obtained properly adjusting the growth parameters such as temperature, precursors concentrations, and principally the surfactant concentration and reaction time (arrested growth). The QDs morphology, their size and their size distribution is determined by TEM imaging. By absorption spectroscopy, information regarding the electronic states in QDs are obtained, and exploiting the relation existing between band gap and QD diameter, the mean diameter of the QDS is determined. The emissive properties of the QDs are probed by photoluminescence spectroscopy (PL). From the energy of PL band, an estimation of the QDs diameter can be obtained. Based on the width of absorbance and PL bands, the width of QDs size distributions can be estimated. A large part of the work is concerned with the study of vibrational properties of CdS-QDs by Raman spectroscopy. These investigations are carried out on the CdS-QDs samples purposely grown with different average sizes. In order to perform micro-Raman measurements, the gel-like TOPO-coated CdS-QDs are treated to replace the TOPO layer by thioglycolic acid (TGA). This treatment is necessary in order to have powder-like CdS-QDs being more suitable to a Raman scattering study. To avoid thermal effects or damage to the sample, the micro-Raman measurements must to be performed using very low laser powers (on the sample). In the Raman spectra of CdS-QDs, a decrease of the phonon frequency (red-shift) with respect to the bulk CdS frequency is observed. In particular, the red-shift is expected to be more pronounced for the smallest QDs, while at the increasing of QDs size, the phonon frequency will approach progressively to the bulk value. This red-shift is caused by the lattice expansion and by a subsequent weakening of the bonds which causes a reduction of the resonance frequency. Beyond the red-shift, the quantum confinement is visible also as an asymmetric broadening of the phonon line and by the apparition of a new peak a circa 270 cm-1. Some reports assign this peak to surface modes, while other reports describe this mode as a consequence of new selection rules arising from the reduced dimensionality. The study has also the aim to cross check the theoretical prediction based on the dielectric continuum model and on the surface modes with the experimental results. A relation between the theory and the experiment has been found, in particular, the predicted surface frequencies are in good agreement with the experiments. In conclusion, the goal of this thesis work is to develop a method to grow CdS-QDs with the desired physical characteristics (narrow size distribution) suitable for a systematic study of optical properties (vibrational and electronic).
Rijal, Upendra. "Suppressed Carrier Scattering in Cadmium Sulfide-Encapsulated Lead Sulfide Nanocrystal Films". Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1402409476.
Pełny tekst źródłaSchmall, Nicholas Edward. "Fabrication of Binary Quantum Solids From Colloidal Semiconductor Quantum Dots". Bowling Green State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1245257669.
Pełny tekst źródłaBylsma, Jason Michael. "Multidimensional Spectroscopy of Semiconductor Quantum Dots". Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4001.
Pełny tekst źródłaYildiz, Ibrahim. "Luminescent Probes and Photochromic Switches Based on Semiconductor Quantum Dots". Scholarly Repository, 2008. http://scholarlyrepository.miami.edu/oa_dissertations/103.
Pełny tekst źródłaHess, Whitney Rochelle. "Exploring the versatility of lead sulfide quantum dots in low-temperature, solution-processed solar cells". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/109683.
Pełny tekst źródłaPage 161 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (pages 151-160).
Solution processability and optoelectronic tunability makes lead sulfide quantum dots (PbS QDs) promising candidates for low-temperature, solution-processed thin film solar cells. Central to this thesis is the crucial role of QD surface chemistry and leveraging surface modification to prepare QDs suitable for optoelectronic device applications. The work presented here explores the versatility of PbS QDs integrated into two main device architectures, where the primary role of the QD is unique in each case. In p-i-n planar perovskite solar cells, efforts to utilize PbS QDs as a hole transport material and the effects of size tuning and surface passivation with cadmium on device characteristics are discussed. A combination of QD size reduction and minimal cadmium-to-lead cation exchange is found to improve the open circuit voltage and hole extraction into the PbS QD layer. In ZnO/PbS QD heterojunction solar cells, the feasibility of preparing fully inorganic, halometallate-passivated PbS QD inks for use as the absorber layer is discussed. A modified biphasic ligand exchange strategy is presented and in order to further elucidate electronic passivation in these QD ink systems, optical properties were investigated with steady state and time-resolved photoluminescence. Significantly, PbS QDs exhibit comparable quantum yields in solution before and after ligand exchange and no significant trap state emission was observed in solution and in film. Ink devices were fabricated with one- and two-layer depositions, which significantly reduce fabrication time compared to traditional layer-by-layer deposition, and devices exhibit anomalous efficiency improvement throughout storage in air.
by Whitney Rochelle Hess.
Ph. D. in Physical Chemistry
Hwang, Gyuweon. "Surface trap passivation and characterization of lead sulfide quantum dots for optical and electrical applications". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98741.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 113-119).
Quantum dots (QDs) are semiconductor nanocrystals having a size comparable to or smaller than its exciton Bohr radius. The small size of QDs leads to the quantum confinement effects in their electronic structures. Their unique optical properties, including a tunable emission from UV to IR, make QDs attractive in optoelectronic applications. However, further improvements in device performance are required to make them competitive. One well-known factor that presently limits the performance of QD thin film devices is sub-band-gap states, also referred to as trap states. For instance, trap states impair optical properties and device performance by providing alternative pathways for exciton quenching and carrier recombination. Chemical modification of QDs has been commonly used for passivating trap states and thereby improving QD devices. However, the influence of chemical modifications of ligands, QD surfaces, or synthetic routes on electrical properties of QD thin films is not sufficiently characterized. Suppressing the trap states in QD thin films is a key to improve the performance of QDbased optoelectronics. This requires fundamental understanding of trap state source, which is lacking in these materials. In this thesis, I pursue to find a systematic method to control density of trap states by exploring different characterization techniques to investigate trap states in QD thin films. These attempts provide insight to develop a rationale for fabricating better performing QD devices. This thesis focuses on the trap states in IR emitting lead sulfide (PbS) QD thin films, which have great potential for application in photovoltaics, light emitting diodes (LEDs), photodetectors, and bio-imaging. Previously, QD thin films are treated with different ligands to passivate trap states and thereby improve the device performance. Through my work, I pursued to unveil the electrical characteristics and chemical origin of trap states, and develop a strategy to suppress the trap states. First, I hypothesize that surface dangling bonds are a major source of trap states. An inorganic shell layer comprised of cadmium sulfide (CdS) is introduced to PbS QDs to passivate the surface states. Addition of CdS shell layers on PbS QDs yields an enhanced stability and quantum yield (QY), which indicates decreased trap-assisted exciton quenching. These PbS/CdS core/shell QDs have a potential for deep-tissue bio-imaging in shortwavelength IR windows of 1550-1900 nm. However, the shell layer acts as a transport barrier for carriers and results in a significant decrease in conductivity. This hinders the incorporation of the core/shell QDs in electrical applications. An improved reaction condition enables the synthesis of PbS/CdS QDs having a monolayer-thick CdS shell layer. These QDs exhibit QY and stability comparable to thick-shell PbS/CdS QDs. Incorporation of these thin-shell QDs improves external quantum efficiency of IR QD-LEDs by 80 times compared to PbS core-only QDs. In the second phase of my work, I explore capacitance-based measurement techniques for better understanding of the electrical properties of PbS QD thin films. For in-depth analysis, capacitance-based techniques are introduced, which give complementary information to current-based measurements that are widely used for the characterization of QD devices. Nyquist plots are used to determine the dielectric constant of QD films and impedance analyzing models to be used for further analysis. Mott-Schottky measurements are implemented to measure carrier concentration and mobility to compare PbS core-only and PbS/CdS core/shell QD thin films. Drive-level capacitance profiling is employed to characterize the density and energy level of trap states when QD films are oxidized. Lastly, I investigate the chemical origin of trap states and use this knowledge to suppress the trap states of PbS QD thin films. Photoluminescence spectroscopy and X-ray photoelectron spectroscopy show that standard ligand exchange procedures for device fabrication lead to the formation of sub-bandgap emission features and under-charged Pb atoms. Our experimental results are corroborated by density functional theory simulation, which shows that the presence of Pb atoms with a lower charge in QDs contributes to sub-bandgap states. The trap states generated after ligand exchange were significantly reduced by oxidation of under-charged Pb atoms using 1,4-benzoquinone. The density of trap states measured electrically with drive-level capacitance profiling shows that this reduces the electrical trap density by a factor of 40. In this thesis, I characterized trap states and showed that by suppressing the trap states we can modify the electrical properties of QD thin films, which influence the performance of QD devices directly. This work is a starting point to fully analyze the trap states in QD thin devices and thereby provides insight to design a rationale for fabricating better performing QD devices.
by Gyuweon Hwang.
Ph. D.
Roland, Paul Joseph. "Charge Carrier Processes in Photovoltaic Materials and Devices: Lead Sulfide Quantum Dots and Cadmium Telluride". University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1449857685.
Pełny tekst źródłaDiederich, Geoffrey M. "Synthesis of Zinc Telluride/Cadmium Selenide/Cadmium Sulfide Quantum Dot Heterostructures for use in Biological Applications". Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1342542873.
Pełny tekst źródłaBhagyaraj, Sneha. "Green synthesis, characterization and applications of cdse based core-shell quantum dots and silver nanocomposites". Thesis, Cape Peninsula University of Technology, 2015. http://hdl.handle.net/20.500.11838/2318.
Pełny tekst źródłaResearchers around the world are now focusing on inculcating green chemistry principles in all level of research especially in nanotechnology to make these processes environmental friendly. Nanoparticles synthesized using green chemistry principles has several advantages such as simplicity, cost effectiveness, compatibility for biomedical and pharmaceutical applications and large scale production for commercial purpose. Based on this background, this thesis present the design, synthesis, characterization and applications of various CdSe based core-shell and core-multi shell quantum dots (QDs), quantum dots-polymer nanocomposites, silver nanoparticles (Ag-NPs) and silver nanocomposites via completely green methods. Various QDs like CdSe/CdS/ZnS and CdSe/ZnS, and there polymer nanocomposites were successfully synthesized and characterized. The high quality of the as-synthesized nanoparticles was confirmed using absorption and photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Detailed optical and morphological characterization showed that the CdSe/CdS/ZnS core-multi shell QDs were small, monodispersed with high fluorescent intensity and narrow emission width. The CdSe/CdS/ZnS core multi-shell QDs were dispersed in epoxy polymer matrix to obtain fluorescent epoxy nanocomposite. The brillouin spectroscopy analysis revealed that the presence of QDs inside polymer composite reduces the acoustic frequency of the polymer. Highly fluorescent CdSe/ZnS core-shell QDs was also synthesized and dispersed in PMMA polymer matrix to prepare bright yellow emitting nanocomposite film. The as-synthesized QDs also undergone surface exchange to convert the organically soluble nanomaterial to water soluble. After the ligand exchange, the morphology and above all the fluorescence property of the quantum dots remained intact. In another approach, HDA-capped CdSe nanoparticles were synthesized in the absence of an inert gas followed by dispersion in polymer polycaprolactone to produce orange light emitting electrospun polymer nanocomposite nanofibre.
Haugen, Neale O. "Spectroscopic Studies of Doping and Charge Transfer in Single Walled Carbon Nanotubes and Lead Sulfide Quantum Dots". University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1438768843.
Pełny tekst źródłaVeinot, Jonathan G. C. "Surface functionalization and derivatization of 25 A cadmium sulfide nanoclusters : a study of potential molecular electronic components /". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://wwwlib.umi.com/cr/yorku/fullcit?pNQ43453.
Pełny tekst źródłaTypescript. Includes bibliographical references (leaves 155-161). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNQ43453
Marrujo, Dan Madrid. "Spectral Conversion of Light Using Cadmium Selenium Zinc Sulfide Core Shell Quantum Dots to Increase the Efficiency of Photovoltaic Cells". DigitalCommons@CalPoly, 2008. https://digitalcommons.calpoly.edu/theses/8.
Pełny tekst źródłaMarrujo, Dan Madrid Savage Richard N. "Spectral conversion of light using cadmium selenium zinc sulfide core shell quantum dots to increase the efficiency of photovoltaic cells : a thesis /". [San Luis Obispo, Calif. : California Polytechnic State University], 2008. http://digitalcommons.calpoly.edu/theses/8/.
Pełny tekst źródła"June 2nd, 2008." "In partial fulfillment of the requirements for the degree [of] Master of Science in Engineering with Specialization in Materials Engineering." "Presented to the faculty of California Polytechnic State University, San Luis Obispo." Major professor: Richard Savage, Ph.D. Includes bibliographical references (leaves 98-100). Also available online and on microfiche (2 sheets).
Longo, Antonio Valerio. "Development of alternate-current thin-film electroluminescent devices based on manganese-doped zinc sulfide quantum-dot technology". Electronic Thesis or Diss., Université Paris Cité, 2021. http://www.theses.fr/2021UNIP7253.
Pełny tekst źródłaIn this work we address the development of a light-emitting device, based on manganesedoped zinc sulfide nanoparticles, working under the application of an alternate-current voltage. Our device is based on a simple capacitive configuration implying a single layer of spin-cast nanoparticles sandwiched between two insulating thin films. In the first part of our work, we studied the nanoparticle system from a fundamental point of view. These nanoparticles, synthesized without the use of any surfactant by a microwave-assisted synthesis, are characterized by a phosphorescence activity in the orange region of the visible spectrum stemming from manganese dopants. In our work, we have observed and studied an enhancement of this optical activity under prolonged UV-light exposition. Our investigation allowed us to ascribe this phenomenon to a local lattice-strain effect around manganese chromophores due to a surface oxidation process induced by UV light. In a second part of our work, we focused on the dielectric properties of the insulating layers, consisting in an hafnium oxide film deposited by atomic layer deposition. By exploring several layer thicknesses and deposition temperatures, we have optimized the dielectric properties of the film, leading to more reliable and robust results. Moreover, we have also addressed the possibility of depositing an alumina layer by an in solution sol-gel approach, highlighting the main limitations of this technique. In the third part of the manuscript, the main characteristics of the complete electroluminescent device are addressed. More specifically, we recovered the orange emission band due to manganese doping, as well as the typical threshold behavior of the intensity of the emitted light as a function of the applied voltage. By exploiting structural characterization, impedance spectroscopy measurements and a careful comparison with theoretical works on similar devices, we have been able to state that the mechanism behind the observed light emission is a fieldinduced charge-creation process within the active layer only, followed by charge transport across the layer and radiative recombination within a single nanoparticle. Compared to previous works based on manganese-doped zinc sulfide nanoparticles, our key point has been the use of uncoated nanoparticles which allowed to achieve a very compact nanoparticle arrangement, favoring the physical mechanism mentioned above. Our work constitutes a step forward in the development of more compact, industrially feasible and eco-friendly light emitting devices
Masilela, Nkosiphile. "Low symmetry metallophthalocyanines and their nanoparticle conjugates for photodynamic antimicrobial chemotherapy". Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1001906.
Pełny tekst źródłaAndrade, George Ricardo Santana. "Nanocompósitos baseados em quantum dots de CdS e CdS:Cu suportados em mercaptopropilsílica : síntese, caracterização e aplicação em fotocatálise". Universidade Federal de Sergipe, 2011. http://ri.ufs.br:8080/xmlui/handle/123456789/3514.
Pełny tekst źródłaTextile dyes and other commercial dyestuffs have become a focus of environmental remediation efforts in the last few years. Considerable attention has been expended recently on the photocatalytic oxidative degradation of colored contaminants in waste water over semiconductor surfaces. In this work, we evaluated the photocatalytic activities of nanocomposites based on cadmium sulfide (CdS) quantum dots anchored on (mercaptopropyl)silica (MPS) monitoring the photodegradation of methylene blue and rhodamine 6G aqueous solutions under sunlight irradiation. Herein, MPS was selected as the stabilizing agent to prepare the CdS and CdS doped with Cu2+ Qdots by the chemical reaction of cadmium acetate and thiourea in dimethylformamide Abstract|viii (DMF) by a rather simple one-step method. The quantum size effect has been monitored by UV visible spectroscopy, which showed a blue shift of about 16 48 nm relative to bulk CdS in the range 442-474 nm. Particle sizes calculated from Brus s model were found to be dependent on the MPS amount. These results evidenced that as-prepared CdS nanocrystals behave as Qdots. Additionally, XRD mensurements and HRTEM images indicated CdS cubic structure for the nanocrystals, which also exhibited an increment in the fluorescence intensity with decreasing particle size. UV absorption spectra for Cu-doped CdS are essentially similar to that of the undoped Qdots, but the luminescence properties are quite different from those of the undoped samples. Moreover, these materials could effectively degrade the organic dyes under sunlight irradiation by pseudo-first-order kinetics. This suggested that the CdS Qdots prepared in this work can be used as the potential photocatalyst to effectively treat the organic pollutants under sunlight irradiation.
Indústrias têxteis produzem elevado volume de efluentes ricos em corantes tóxicos e não-biodegradáveis. A degradação fotocatalítica de poluentes aquosos usando nanocristais semicondutores é uma área emergente na remediação ambiental. Neste trabalho, a atividade fotocatalítica de quantum dots (Qdots) de sulfeto de cádmio (CdS) ancorados em (mercaptopropil)sílica (MPS) foi investigada a partir da degradação dos corantes azul de metileno (AM) e rodamina 6G (R6G). Nanocristais de CdS e CdS dopado com íons Cu2+ foram preparados pela reação química de acetato de cádmio e tiouréia em presença da matriz de sílica organofuncionalizada, por um método bastante simples e de uma única etapa. Pelos espectros eletrônicos, foi possível notar um Resumo|vi deslocamento para o azul com o aumento da quantidade de MPS e band gaps mais largos do que o bulk de CdS. Os diâmetros das nanopartículas, estimados a partir do modelo de Brus, são dependentes da quantidade da matriz. Estes resultados sugerem que as partículas se comportam como Qdots. Fases cúbicas dos nanocristais são estabelecidas de acordo com dados de DRX e HRTEM e os espectros de emissão corroboram a presença de Qdots no material formado. A dopagem do nanocompósito com íons Cu2+ propiciou mudanças na recombinação elétron-buraco das nanopartículas de CdS, o que foi observado pelos espectros de absorção no UV-vis e de emissão. Avaliação temporal no espectro de absorção no UV-vis dos corantes AM e R6G em contato com CdS/MPS e CdS:Cu/MPS durante irradiação com luz solar mostrou uma pronunciada diminuição da intensidade de absorbância e um deslocamento do máximo de absorção para menores comprimentos de onda, em resposta à formação de subprodutos de degradação.
Nascimento, Cristiane da Cunha. "Síntese, caracterização e aplicação em fotocatálise de nanocristais semicondutores de sulfeto de cádmio suportados em argila tiolada". Universidade Federal de Sergipe, 2011. https://ri.ufs.br/handle/riufs/3512.
Pełny tekst źródłaThe challenge of nanotechnology, the science that studies the phenomena as well as the manipulation of materials at nanoscale (1-100 nm) is the control of composition, shape and size of nanoparticles, parameters that influence the physical, chemical, optical and electronic properties. In this context, the so-called quantum dots (QDs) are semiconductor nanoparticles which have attracted considerable attention due to their heavily size-dependent optical and electronic properties. Cadmium sulfide (CdS) QDs exhibit important photoluminescent properties, allowing applications in optoelectronic systems, photocatalysis, photodegradation of pollutants in the water medium etc. In this work, we present the results of the synthesis and characterization of CdS nanocrystals, in the absence and in the presence of doping Mn (II) ions, supported on Montmorillonite thiolated (MT) as well as their application as photocatalysts. The materials were characterized by UV-Vis absorption spectroscopy, X-ray diffractometry, photoluminescence spectroscopy and High-Resolution transmission electron microscopy. The effects of nanoparticle size, evaluated first by UV-visible spectroscopy, showed that the absorption maximum changed from 470 to 460 nm for different proportions of the support relative to CdS precursors. The XRD patterns showed three peaks of CdS nanocrystals related to the cubic phase of CdS. The photoluminescence spectra have shown emission bands around 470, 476, 484 and 495 viii nm, attributed to direct recombination of electron-hole pairs, and the presence of a shoulder around 578 nm, attributed to radiative recombination in trap levels from surface deffects. HRTEM images for the sample of CdS/MT 200 mg suggest the presence of monocrystalline CdS nanocrystals with approximately 4.8 nm which assemble together forming polycrystalline aggregates with a size from about 45 nm intercalated into clay layers. The photocatalytic activity of CdS/MT and CdS:Mn / MT was studied by Rhodamine 6G (R6G) photodegradation under sunlight irradiation. The results have shown a decrease in the intensity of the bands in addition to a shift from 526 to 505 nm in the absorption maximum with increasing time. According to the results of photocatalysis after 80min practically all the dye had been degraded, on the other hand, for the adsorption test, after the first 20 minutes there were no significant changes in the dye concentration. The rate of decolorization of dye showed that after 80 min the QDs have an effective induction in the degradation of R6G and the photocatalytic decolorization of R6G can be described by a pseudo first order kinetic model.
O desafio da nanotecnologia, ciência que estuda os fenômenos e manipulação de materiais em escala nanométrica (1-100 nm), é o controle de composição, forma e tamanho de nanomateriais, parâmetros que influenciam as propriedades físicas, químicas, óticas e eletrônicas. Dentro desse contexto, os quantum dots (QDs) são nanopartículas semicondutoras que têm atraído uma atenção considerável devido as suas propriedades ópticas e eletrônicas, que são fortemente dependente da sua dimensão. Os QDs de sulfeto de cádmio (CdS) apresentam importantes propriedades de fotoluminescência, que possibilitam aplicações em sistemas optoeletrônicos, nanosemicondutores, fotocatálise, fotodegradação de poluentes na água etc. Neste trabalho, apresentamos os resultados da síntese, caracterização e aplicação em fotocatálise e adsorção dos nanocristais de CdS, na presença e na ausência de dopagem com íons Mn (II), suportados em Montmorilonita Tiolada (MT). Os materiais obtidos vi foram caracterizados por Espectroscopia de Absorção no UV-vis, Difração de Raios-X, Fotoluminescência e Microscopia Eletrônica de Transmissão de Alta Resolução. Os efeitos do tamanho das nanopartículas foram estudas por espectroscopia de UV-visível que mostraram uma absorção máxima em 470 e 460 nm para diferentes proporções da MT. Os difratogramas indicaram três picos relacionados às nanopartículas do CdS que corresponde a fase cúbica do CdS, o que foi corroborado com os dados de HRTEM. Os espectros de fotoluminescência mostram bandas de emissão em torno de 470, 476, 484 e 495 nm atribuídas à recombinação direta dos pares elétron-buraco, e a presença de um ombro em torno de 578 nm, atribuída a recombinação radiativa em níveis de armadilhas provenientes de imperfeições do material. As imagens de HRTEM para a amostra de CdS/MT 200 mg sugerem a presença de nanocristais de CdS monocristalinos, com diâmetro de aproximadamente 4,8 nm, agregados na forma de partículas policristalinas com um tamanho aproximadamente entre 45 nm intercalados nas lamelas da argila. A atividade fotocatalítica do CdS/MT e do CdS:Mn/MT foi estudada através da fotodegradação da Rodamina 6G (R6G) sob irradiação solar.Os resultados evidenciaram uma diminuição da intensidade das bandas e um deslocamento de 526 para 505 nm do máximo de absorção com o aumento do tempo, indicando a formação de intermediários de degradação. De acordo com os resultados de fotocatálise, após 80min de reação praticamente, praticamente todo o corante havia sido degradado, enquanto que para o ensaio de adsorção após os 20 primeiros minutos não houve mudanças significativas na concentração do corante nas amostras. A taxa de descolorização do corante mostrou que, depois de 80 min, os QDs tiveram uma efetiva indução na degradação da R6G e que a descoloração fotocatalítica da R6G pode ser descrita por um modelo cinético de pseudo primeira ordem.
Adikaram, Mudiyanselage Janith S. "Nanomaterial synthesis and surface treatment by atmospheric pressure cold plasmas". Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/232838/1/Janith_Adikaram%20Mudiyanselage_Thesis.pdf.
Pełny tekst źródłaGeszke-Moritz, Malgorzata. "Synthesis of stable and non-cadmium containing quantum dots conjugated with folic acid for imaging of cancer cells". Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL066N/document.
Pełny tekst źródłaSemiconductor QDs are tiny light-emitting crystals, and are emerging as a new class of fluorescent labels for medicine and biology. The aim of this work was to develop a new class of non-toxic QDs probes with essential attributes such as water dispersibility, photostability, biocompatibility, high luminescence and possible excitation with low-energy visible light, using simple processing method. Such nanoprobes could be used for bio-imaging of cancer cells. In the performed studies, I focused on ZnS and ZnSe QDs as they are cadmium-free and might be excited biphotonically.The synthesis protocols of ZnS and ZnSe QDs doped with two ions such as Mn or Cu and stabilized by 3-mercaptopropionic acid or 1-thioglycerol were established, followed by NCs characterization (diameter, surface charge, photophysical properties, …) using analytical techniques such as spectrophotometry UV-vis, fluorimetry, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering (DLS), infra-red analysis (FT-IR), thin layer chromatography (TLC) and electron paramagnetic resonance (EPR). The cytotoxicity of synthesized bare and conjugated NPs was evaluated on cancer cell lines using MTT, XTT and ferrous oxidation-xylenol orange assay.Finally, chosen well fluorescent and weakly toxic types of as-prepared and characterized QDs were used for bio-imaging of cancer cells. In these experiments, FA-functionalized NCs were excited biphotonically. The performed experiments showed the potential of QDs as cancer cells fluorescent markers and that they accumulate around the cell nuclei
Mao, Baodong. "Synthesis and Property Characterization of Novel Ternary Semiconductor Nanomaterials". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1334065821.
Pełny tekst źródłaLiyanage, Geethika Kaushalya. "Infrared Emitting PbS Nanocrystals through Matrix Encapsulation". Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1403953924.
Pełny tekst źródłaOng, Jackson Sen Kiat. "Análise de perda e fluorescência em fibras de cristal fotônico com líquidos e polímeros". Universidade Presbiteriana Mackenzie, 2008. http://tede.mackenzie.br/jspui/handle/tede/2752.
Pełny tekst źródłaFundação de Amparo a Pesquisa do Estado de São Paulo
Photonic Crystal Fibers (PCFs) have led to renewed attention to the fiber optics field due to the several unique properties resulting from their microstructured profile. In particular, this profile enables one to insert liquids and polymers into the fiber so that they efficiently interact with light, which can be used for chemical and biological sensing, nonlinear optics, and the development of active photonic devices. Several applications require selectively inserting the sample into the core of a hollow-core PCF, leaving cladding holes unfilled. This dissertation presents two contributions toward the development of core-filled PCFs. Loss mechanisms in liquid-core PCFs are studied and fluorescence from a quantum-dot-doped polymer-core PCF is demonstrated. Loss studies were motivated by the evaluation of the transmission of light at 633 nm in 5-7 cm long water-core PCF samples the tips of which are cleaved at left in air. It was generally found that transmission was less than 5%, while water attenuation alone would lead to ~98% transmission. Liquid evaporation was found to be an important additional loss mechanism and its rate was determined both through microscopy and optical coherence tomography (OCT) in capillary fibers and PCFs filled with deionized water, ethanol and toluene. Although the evaporation rate in ethanol was found to be higher, for all samples a few hundreds of micrometers at the fiber tips are emptied over minutes. A method to prevent evaporation consisting of sealing the fiber tips with a clear UV curable polymer (NOA 73) was successfully tested. Filling a PCF with active elements can lead to optical amplification and laser action. Researchers at NTT recently observed fluorescence at 609nm from CdSe quantum dots in the core of a 1m long PCF. In this dissertation, the fluorescence emission is described from ~2.2 nm PbS quantum dots was observed with a specified emission peak of 890 nm. The quantum dots were suspended in NOA73 and inserted in the core of 7-9 cm long PCFs of with a hollow core diameter of 10.9 5m. The fiber was pumped by a 2.5 mW He-Ne laser or a 679 nm, 390 mW diode laser and its emission was characterized. A maximum fluorescence power of 2.2 5W and a maximum efficiency of 0.03% were achieved. Varying the quantum dot concentration revealed that lower concentrations lead to higher efficiencies.
Fibras de cristal fotônico (PCFs) têm levado a uma atenção renovada ao campo das fibras ópticas devido às diversas propriedades exclusivas resultantes do seu perfil microestruturado. Em particular, este perfil permite a introdução de líquidos e polímeros na fibra de modo que estes interajam eficientemente com a luz, levando a aplicações em sensoriamento químico e biológico, óptica não-linear, e o desenvolvimento de dispositivos fotônicos ativos. Diversas aplicações requerem a inserção seletiva da amostra no núcleo de uma PCF de núcleo oco, deixando buracos da casca sem preenchimento. Esta dissertação apresenta duas contribuições para o desenvolvimento de PCFs de núcleo preenchido. Os mecanismos de perda em PCFs de núcleo líquido são estudados e a fluorescência de uma PCF de núcleo polimérico dopado com pontos quânticos é demonstrada. Os estudos da perda foram motivados pela análise da transmissão da luz em 633 nm em amostras de 5-7 cm de PCF de núcleo de água cujas pontas eram clivadas e deixadas no ar. Geralmente a transmissão encontrada era menor do que 5%, enquanto que a atenuação da água poderia levar a ~98% de transmissão. Verificou-se que a evaporação do líquido era um mecanismo de perda importante e sua taxa foi determinada através de microscopia e de tomografia por coerência óptica (OCT) em fibras capilares e PCFs preenchidas com água deionizada, etanol e o tolueno. Embora a taxa da evaporação no etanol seja maior, para todas as amostras algumas centenas de micrômetros nas pontas da fibra são esvaziadas em minutos. Um método para impedir a evaporação que consiste em selar as pontas da fibra com um polímero curável por UV (NOA 73) foi testado com sucesso. O preenchimento de uma PCF com elementos ativos pode conduzir a amplificação óptica e ação laser. Pesquisadores da NTT observaram recentemente fluorescência em 609 nm em pontos quânticos de CdSe no núcleo de uma PCF de 1 m de comprimento. Nesta dissertação, a emissão de fluorescência é observada com pontos quânticos de PbS de ~2,2 nm e pico de emissão nominal em 890 nm. Os pontos quânticos foram suspensos em NOA73 e introduzidos no núcleo de PCFs de 7-9 cm de comprimento e núcleo oco de 10,9 5m de diâmetro. A fibra foi bombeada por um laser de He-Ne de 2,5 mW ou um laser de diodo de 679 nm e 390 mW e sua emissão foi caracterizada. Uma fluorescência com potência máxima de 2,2 5W e eficiência máxima de 0,03% foi obtida. Variando a concentração de pontos quânticos observou-se que baixas concentrações levam a eficiências mais elevadas.
Nagamine, Gabriel 1992. "Revelando a estrutura eletrônica de nanomateriais através de espectroscopia óptica avançada". [s.n.], 2017. http://repositorio.unicamp.br/jspui/handle/REPOSIP/325655.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-09-02T09:51:28Z (GMT). No. of bitstreams: 1 Nagamine_Gabriel_M.pdf: 6846623 bytes, checksum: 1daab6ac65771517c50786728dfce86e (MD5) Previous issue date: 2017
Resumo: Pontos quânticos coloidais (QDs) ternários de CuInS2 (CIS) surgiram como uma alternativa não tóxica, altamente promissora, aos já bem estabelecidos QDs binários de CdX e PbX (X=Se,S). Além de não possuírem metais pesados em sua composição, esses novos materiais apresentam diversas características desejáveis, o que os torna fortes candidatos a serem aplicados em novas tecnologias, tanto em biologia quanto na geração de nova fontes de energia renovável. Além disso, esses QDs apresentam diversas propriedades ópticas que os diferem radicalmente dos QDs binários já conhecidos e ainda são pouco compreendidas. Dentre elas, podemos citar um largo espectro de fotoluminescência (PL), com decaimentos longos e multi-exponenciais e um espectro de absorção pouco definido, com uma longa cauda que vai para o infravermelho. Adicionalmente, esses nanomateriais apresentam um grande Stokes shift, de até 500 meV, cuja origem ainda é desconhecida e amplamente debatida na literatura. Com o intuito de desvendar os mecanismos por trás dessas propriedades distintas, nesse trabalho, realizamos uma série de estudos da sua dinâmica ultrarrápida e de espectroscopia não-linear para revelar a estrutura eletrônica desses QDs. Das medidas de dinâmica ultrarrápida, mostramos uma maneira alternativa de medir-se o tamanho dessas nanopartículas, por meio da sua seção de choque de absorção em 3,1 eV, que seria independente da variabilidade morfológica apresentada por elas. Adicionalmente, fazendo um estudo da dependência das interações multi-éxciton desses QDs com o tamanho, reportamos que esses nanomateriais apresentam interações Coulombianas reduzidas em relação aos QDs binários já conhecidos. Das medidas de espectroscopia não-linear, mostramos a primeira comprovação experimental de que a transição óptica entre os níveis fundamentais da banda de valência e condução é proibida por paridade em partículas esféricas. Além disso, comparando o espectro de absorção de 2 fótons das amostras estudadas com imagens de microscopia eletrônica de transmissão (TEM), mostramos que quebras na simetria das funções de onda dos portadores nesses QDs alteram as suas regras de seleção para transições ópticas. Adicionalmente, verificamos que, controlando a composição e tamanho desses QDs, é possível obter seções de choque de 2PA de até 13.500 GM dentro da janela de transparência óptica do tecido do corpo humano
Abstract: Ternary CuInS2 (CIS) Colloidal Quantum Dots (QDs) have emerged as a non-toxic promising alternative to the CdX and PbX (X=Se,S) binary QDs. Besides not having heavy metals on their composition, these new materials show several desirable features, which makes them strong candidates to be applied in new technologies, from biology to the new generation of renewable energy sources. Furthermore, these QDs present various optical properties that radically differs from the already well studied binary QDs and yet are not well understood. Among them, we can cite a large photoluminescence (PL) spectra, with long and multi-exponential decays and a poorly defined absorption spectra, with a long infrared tail. Additionally, these nanomaterials present large Stokes shift, up to 500 meV, whose origin is still not well understood and largely debated on the literature. To reveal the mechanism behind these distinguished properties, here, we perform a series of ultrafast spectroscopy and non-linear spectroscopy studies to reveal the electronic band structure of these QDs. From the ultrafast dynamics measurements, we show an alternative way to measure the size of these nanoparticles, through their absorption cross section in 3,1 eV, which would be independent from the morphologic variability presented by them. Additionally, by performing studies of the size dependent multi-exciton interactions, we report that these kind of nanomaterials present reduced Coulombic interactions in relation to de already known binary QDs. From the non-linear spectroscopy measurements, we show the first experimental confirmation that the optical transition between the electron and hole ground state are parity forbidden in the spherical particles. In addition, comparing the two-photon absorption (2PA) spectra of the studied samples with their transmission electron microscopy images, we show that symmetry breaking of the electronic wave functions in these QDs change their optical transition selection rules. Additionally, we verify that, by controlling the size and composition of these QDs, it is possible to obtain 2PA cross section as high as 13,500 GM inside the transparency window of the human tissue
Mestrado
Física
Mestre em Física
1547612/2015
13/16911-2
CAPES
FAPESP
Shiman, Dmitriy I., Vladimir Sayevich, Christian Meerbach, Pavel A. Nikishau, Irina V. Vasilenko, Nikolai Gaponik, Sergei V. Kostjuk i Vladimir Lesnyak. "Robust Polymer Matrix Based on Isobutylene (Co)polymers for Efficient Encapsulation of Colloidal Semiconductor Nanocrystals". American Chemical Association, 2019. https://tud.qucosa.de/id/qucosa%3A74322.
Pełny tekst źródłaKhan, Motiur Rahman. "Nonlinear Charge Transport and Photo-Physical Studies in Conjugated Polymers (P3meT, P3HT) and their Hybrid Composites with Silver Sulfide Quantum Dots". Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4133.
Pełny tekst źródłaLan, Li Hsuan, i 藍立璿. "Silver sulfide quantum dot syntheses by microfluidic reaction and its applications in bioimaging". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/ar9866.
Pełny tekst źródłaCollins, Patricia Lillian. "Detection and speciation of silver in freshwater containing triclosan and thyroid hormone T3". Thesis, 2010. http://hdl.handle.net/1828/2915.
Pełny tekst źródłaTzung-LuenLi i 利宗倫. "Sulfide Quantum Dots as Sensitizers for Photochemical Electrodes". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/79589021958138999231.
Pełny tekst źródła國立成功大學
化學工程學系碩博士班
100
The photoelectrode is a key component determining the efficiency in quantum dot-sensitized solar cell (QDSSC). The semiconductor QD sensitizer on the photoelectrode must have sufficiently high conduction band edge for rapid electron injection into TiO2, and wide absorption characteristics in the solar spectrum. Based on these perspectives, I-III-VI type CuInS2 QDs having bulk bandgap energy of 1.5 eV and a sufficiently high conduction band edge due to quantum confinement effect is a suitable QD sensitizer for TiO2 photoelectrode. In addition, the CuInS2-QDs/CdS heterostructural co-sensitizer, first employed in sensitizing TiO2, shows high performances in photoelectrochemical cells for both water decomposition and QDSSC. This dissertation includes three parts: 1. Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes; 2. CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells; 3. High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure. In the first part, we synthesize colloidal CuInS2 quantum dots (QDs) by solvothermal method for use as sensitizers for photoelectrochemical cells. The synthesis is conducted in an autoclave containing CuCl, InCl3, and S at a Cu/In/S ratio of 1/1/100. This highly sulfur-excess environment leads to burst nucleation of CuInS2 at relatively low temperatures. For synthesis conducted at 110–150 ℃ for 1 h, the atomic ratio of the CuInS2 products is Cu:In:S = 1.1:1.0:2.1 and the particle size increases with the temperature from 3.5 to 4.3 nm, with a narrow size distribution within 7–11%. The as-prepared colloidal CuInS2 exhibits the quantum confinement effect in the optical absorption spectra. The photoluminescence emission of the resulting CuInS2 QDs has high energy, which may result from excited electrons falling from quantized levels to the ground states. Under illumination of simulated AM 1.5G at one sun intensity, the CuInS2-sensitized TiO2 electrodes in aqueous sulfide/sulfite electrolyte show an encouraging photocurrent of approximately 2 mA cm-2 in water decomposition. The second part reports on a high-performance photoelectrode consisting of a nanocrystalline TiO2 film co-sensitized with CuInS2 QDs and CdS layers. In this photoelectrode, solvothermally synthesized CuInS2 QDs, monodispersed at sizes of 3.5 and 4.3 nm, are attached to a TiO2 substrate by means of a bifunctional linker, and followed by an in-situ growth of CdS by successive ionic layer adsorption and reaction. The QDs has a high-level conduction band for the efficient injection of electrons into TiO2. The CdS coating provides high surface coverage to prevent interfacial recombination and releases the quantum confinement of the QDs, resulting in band gap reduction from 2.10-1.80 eV and 1.94-1.76 eV for the 3.5 and 4.3 nm QDs, respectively. With AM 1.5G illumination at 100 mW cm-2, this heterostructural electrode exhibits a saturated photocurrent as high as 16 mA cm-2 in a polysulfide solution. Systematic analysis suggests that the photocurrent resulting from the CuInS2 QDs is increased by more than 100%, thanks to the CdS coating. This coating extends the absorption spectra of the QDs and facilitates charge separation by scavenging photogenerated holes in the valence band of the QDs. The third part reports a high-performance quantum dot-sensitized solar cell (QDSSC), which consists of a TiO2/CuInS2-QDs/CdS/ZnS photoanode, a polysulfide electrolyte, and a CuS counter electrode. The sensitization process for the TiO2 substrate is identical to that in the second part except for a final ZnS passivation layer. The CuS counter electrode, prepared via successive ionic solution coating and reaction, has a small charge transfer resistance in the polysulfide electrolyte. The QDSSC exhibits a short-circuit photocurrent (Jsc) of 16.9 mA cm-2, an open-circuit photovoltage (Voc) of 0.56 V, a fill factor of 0.45, and a conversion efficiency of 4.2% under one-sun illumination. The heterojunction between the CuInS2 QDs and CdS extends both the optical absorption and incident photon conversion efficiency (IPCE) spectra of the cell to a longer wavelength of approximately 800 nm, and provides an IPCE of nearly 80% at 510 nm. The high TiO2 surface coverage of the sensitizers suppresses recombination of the photogenerated electrons. This results in a longer lifetime for the electrons, and therefore, the high Voc value. The notably high Jsc and Voc values demonstrate that this sensitization strategy, which exploits the quantum confinement reduction and other synergistic effects of the CuInS2-QDs/CdS/ZnS heterostructure, can potentially outperform those of other QDSSCs.
Bennett, Ellie. "Synthetic and Analytical Advancements for Zinc Sulfide Containing Quantum Dots". Thesis, 2021. https://doi.org/10.7916/d8-pg23-8v73.
Pełny tekst źródłaGUO, SHENG-HORNG, i 郭聖宏. "Synthesis and Properties of Monodisperse Colloidal Lead Sulfide Quantum Dots". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/w2s5sc.
Pełny tekst źródła國立臺南大學
材料科學系碩士班
107
Inorganic lead chalcogenide quantum dots (PbX, X = S, Se, and Te) with the unique photoluminescence in the infrared region has recently acquired much advancement in the synthesis of homogeneous nanoparticles, and these empower them with various advantages in the optoelectronics applications in infrared range. Nevertheless, the research and development of PbS QDs have lasted in the past two decades. PbS QDs still lag the mature II-VI and III-V QDs material (CdSe, InP, InAs, etc.) which have been widely used in market. Herein, we prepared PbS QDs with different S/Pb ratios, reaction temperatures, and reaction times by the hot injection method, then the results are analyzed to choose the best reaction parameters. The photoluminescence of PbS QDs with widely tunable wavelength (900~1650 nm), narrow absorption line widths (FWHM<110 nm), and narrow particle size distributions (<10%) can be obtained. In addition, the purification of the PbS QDs has been studied in details. The removal of the unreacted PbCl2 and excess solvent that are formed as soluble Pb precursors in the synthesis has been paid special attention. Furthermore, the wavelength shift, kinetics, and the long-term stability of the final products are studied for the cation exchange of colloidal PbS nanoparticles under different temperatures.
Shrestha, Aabhash. "Lead sulfide quantum dots and their application for solar cells". Thesis, 2016. http://hdl.handle.net/2440/104743.
Pełny tekst źródłaThesis (Ph.D.) (Research by Publication) -- University of Adelaide, School of Chemical Engineering, 2016.
張嘉訓. "Spectroscopic study of quantum dots on silver nanoparticle arrays". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/27131110461677427438.
Pełny tekst źródła國立彰化師範大學
電機工程學系
100
In the thesis, we discussed the interactions between silver nanoparticles (Ag NPs) and quantum dots (QDs) on anodized aluminum oxide (AAO) substrates by using He-Ne laser (532 nm) to excite surface plasmons (SPs) on Ag NPs. Using direct deposition and immersion methods, we deposited QDs on aluminum (Al), anodized aluminum oxide (AAO) and Ag NPs decorated anodized aluminum oxide (AAO/Ag) substrates. After 8 hours of incubation, we used a He-Ne laser to excite the quantum dots on various substrates. The light-emitting efficiency of the quantum dots was affected by the surrounding silver nanoparticles and the fluorescence from QDs was quenched. In order to further explore the influence of Ag NPs on the light-emitting efficiency of quantum dot, we compared the fluorescence signal strength of different concentrations of QDs in Ag NPs solutions. The quenching ability of Ag NPs on QDs was confirmed. The fluorescence signal of QDs on AAO/Ag substrate was quenched. However, when using 532 nm laser as the excitation source, some specific spectral features were observed. In addition, the substrate or the generation methods of AgNPs do not influence the specific wavelengths of the features. Finally, AAO/Ag substrates were irradiated by different laser sources (488, 532 and 633 nm). The same Raman shifts (1357 cm-1and 1586 cm-1) were observed under different laser sources irradiation. Therefore, the spectral features were likely to be Raman signals. However, it is to be determined what the substance is the source of the Raman signal.
"Biodistribution of Cadmium Selenide/Zinc Sulfide Quantum Dots in Aquatic Organisms". Thesis, 2011. http://hdl.handle.net/1911/70313.
Pełny tekst źródłaMaria, Ahmed. "Improving the photoluminescence quantum efficiency of size-tunable, solution-processed lead-sulfide quantum dots in film". 2004. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=95027&T=F.
Pełny tekst źródłaWang, Chih-Wei (Chih-Wei Jo). "Surface-tunable photoluminescence and nonlithographic patterning of block copolymer-stabilized cadmium sulfide quantum dots". 2005. http://hdl.handle.net/1828/822.
Pełny tekst źródłaTsai, Jia-Shan, i 蔡佳珊. "Microwave synthesized metal sulfide as counter electrode for quantum dots-sensitized solar cells". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/84757732802883631509.
Pełny tekst źródła國立臺灣科技大學
化學工程系
104
In this study, microwave assisted synthetic route was applied for rapid, facial and effective synthesis of counter electrode(CE) for quantum dots-sensitized solar cells(QDSSCs) .Moreover, it is applied for in situ deposition of metal sulfides on the CE, shorten the process time and avoids post treatments. Different metal sulfide CE(CuS, NiS, CoS2, PbS) and aqueous CuInS2/In2S3 quantum dots (QDs) are synthesized by using rapid microwave assisted synthesis approach. The CuInS2/In2S3 QDs photoanode with the CuS CE exhibits champion of short circuit current density (Jsc) of 26.76 mA/cm2, open voltage (Voc) of 650 mV and power conversion efficiency(PCE) of 8.32% at one sun (AM 1.5 G, 100 mW/cm2). Electrochemical impedance spectroscopy (EIS), Tafel and cyclic voltammetry (CV) measurement was employed to understand electro dynamic behavior of metal sulfide CE. Analysis of the data shows that CuS CE performs high electrocatalytic activity towards polysulfide reduction compared with other metal sulfide CE.
Lu, Yu-Chieh, i 盧育杰. "Solution-based Synthesis and Applications of Nanosized Silver and Semiconductor Quantum Dots". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/65679506738026947939.
Pełny tekst źródłaLin, Mei-Chia, i 林美佳. "Synthesis of silver chalcogenides-Cu2-xS quantum dots for applications in solar cells". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/51546675763472857731.
Pełny tekst źródła中興大學
奈米科學研究所
99
We study copper sulfide (Cu2-xS), a low-cost and non-toxic light absorbing material and apply to the quantum dot-sensitized solar cells (QDDSC). The copper sulfide quantum dots (QDs) were synthesized on a nanoporous TiO2 electrode by the successive ionic layer adsorption and reaction method (SILAR). To improve efficiency, passivation treatments including a TiO2 under layer ,a ZnS coating and additional treatments including annealing, a TiO2 scattering layer and an Au counterelectrode were used. The best cell yields a short-circuit current of 22.9 mA/cm2, an open circuit voltage of 0.14 V, a fill factor of 20.2% and a power conversion efficiency of 0.65%. By replacing the platinum count erelectrode with a gold electrode, the performance improves to conversion efficiency 0.90%, open circuit voltage 0.17V, short-circuit current 28.1mA/cm2 and fill factor 18.9%. The efficiency of gold-electrode cells are ~ 38% higher than that of the Pt electrode cells. The crystallinity and morphology were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The optical properties of these Cu2-xS QDs were characterized by UV-vis spectroscopy.
張雅欣. "Application of Silver Nanoparticles and Nanowires for Quantum Dots and Transparent Conductive Coating". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/74788334630956041872.
Pełny tekst źródłaEl-Ballouli, Ala’a O. "Continuous-Flow Synthesis and Materials Interface Engineering of Lead Sulfide Quantum Dots for Photovoltaic Applications". Diss., 2016. http://hdl.handle.net/10754/611210.
Pełny tekst źródłaPendyala, Naresh Babu. "Synthesis, Optical And Photoelectrical Investigations On PbS nano-,micro-structures". Thesis, 2009. https://etd.iisc.ac.in/handle/2005/921.
Pełny tekst źródłaPendyala, Naresh Babu. "Synthesis, Optical And Photoelectrical Investigations On PbS nano-,micro-structures". Thesis, 2009. http://hdl.handle.net/2005/921.
Pełny tekst źródłaTsai, Ting-Wei, i 蔡庭瑋. "All-solid-state nanocrystalline TiO2 thin-film solar cells sensitized by antimony sulfide (Sb2S3) quantum dots". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/zsp3kk.
Pełny tekst źródła國立交通大學
應用化學系分子科學碩博士班
103
All-solid-state nanocrystalline TiO2 thin-film solar cells sensitized by antimony sulfide (Sb2S3) quantum dots were fabricated with using different hole-transporting materials (HTMs) - Poly(3-hexylthiophene) (P3HT), new HTM (HTM797), 2,2ʹ,7,7ʹ-tetrakis(N,N-di-pmethoxyphenylamine)-9,9ʹ-spirobifluorene (spiro-OMeTAD). HTM797 has a similar molecular structure to spiro-OMeTAD and was synthesized to enhance hole mobility via spiro-structure modification. The Sb2S3/P3HT shows the higher power conversion efficiency (PCE = 4.2%) with faster charge diffusion than the other Sb2S3/HTM devices. The Sb2S3/HTM797 exhibits a device efficiency 3.9% with better fill-factor and faster charge transport than the Sb2S3/spiro-OMeTAD (PCE = 3.2%). With using HTM797, the interfacial charge losses in the Sb2S3 solar cells were reduced due to the enhanced charge transport compared with spiro-OMeTAD. At the second part, we studied the DPA (decyl-phosphonic acid) doping effect in the spiro-OMeTAD hole transporting material to increase p-type charge carriers (holes) and to reduce charge transport resistance in the Sb2S3/spiro-OMeTAD solar cells. In the preliminary experiments, DPA surface treatment on the TiO2/Sb2S3 layer was done before HTM coating, we observed somewhat variable different device results in the Sb2S3/spiro-OMeTAD solar cells via DPA post-surface treatment. Therefore to obtain reliable and reproducible device performance by using DPA, we demonstrate DPA as a dopant in the spiro-OMeTAD and then DPA-doped spiro-OMeTAD has been employed as hole transporting material for the TiO2/Sb2S3 solar cells. Herein we can provide some of the experimental data of DPA-doped spiro-OMeTAD effect and improved device performance of the Sb2S3/spiro-OMeTAD solar cells. Key words: Solar Cells, antimony sulfide, hole transport material, 1-decyl phosphonic acid.
Mu, Zuze. "Synthesis, photostability and photocatalytic properties of water-suspended cadmium selenide and cadmium selenide/cadmium sulfide quantum dots". Thesis, 2005. http://hdl.handle.net/1911/17807.
Pełny tekst źródłaLin, Kai-Sheng, i 林凱聖. "Microplasma-assisted Synthesis of Graphene Quantum Dots-Silver Nanoparticle Nanohybrids for Improved Surface Enhanced Raman Scattering". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/8nu2fy.
Pełny tekst źródła國立臺灣科技大學
化學工程系
106
Recently experimental and theoretical works have reported that graphene quantum dots (GQDs), a unique form of a zero-dimensional nanostructure, and their exceptional properties make them promising in biosensing applications. Surface-enhanced Raman scattering(SERS) is an ultra-sensitive analytical technique for bio-molecules detection. While the potential of SPR metals (e.g. Au and Ag) and graphene for SERS has been demonstrated, but the work of GQDs applied as SERS substrates is still lacking. Here we reported the rational design to develop GQD-based SERS active substrate. Furthermore, modified GQD with metal nanostructures will lead to important advance for SERS-based detection. Here we demonstrate a facile synthesis of GQD-AgNP nanohybrids by using the atmospheric-pressure microplasma-assisted electrochemistry. Detailed nanomaterial characterizations including transmission electron microscopy, UV/Vis spectroscopy show that the microplasma-assisted electrochemical reaction can successfully grow Ag nanoparticles (AgNP) onto the GQD surfaces to form the GQD-AgNP nanohybrids with heterodimeric nanostructures within the minute scale. Besides, the photoluminescence (PL) optical study and lifetime analysis of GQDs and GQD-AgNP indicated that the non-radiative fluorescence resonance energy transfer involved in the GQD-AgNP nanohybrids. In the systematic Raman study, R6G is selected as the Raman probe molecules. First, we compare the SERS property of three kinds of GQDs with different photoluminescence property (e.g. different emission wavelength), Raman results show that SERS performance of GQDs is highly influenced by the molecular adsorption ability. The as-produced GQD-AgNP nanohybrids shows superior SERS performance with high enhancement factor (EF) around 1x10^8. We further studied the GQD-AgNP nanohybrids with different FRET efficiency. The results revealed that FRET of the as-produced GQD-AgNP nanohybrids is the dominant factor to SERS properties in our study.
Chen, Hong-Syu, i 陳泓旭. "Photocatalytic Reaction by Using Zinc Sulfide Quantum Dots Embedded Porous Materials : Application for the Reduction of Carbon Dioxide". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/44430561851605264842.
Pełny tekst źródła國立中興大學
化學系所
98
Recently the development of industry has generated a large amount of carbon dioxide and resulted in the greenhouse effect. To make it possible to convert the redundant carbon dioxide into usable compounds, we choose the method of photocatalytic reduction. In this research, we combine absorbents and nanosemiconductor, and successfully synthesize photocatalyst. Then we use this photocatalyst to adsorb carbon dioxide and proceed to photocatalytic reduction. During this process, we pour carbon dioxide into D2O with photocatalyst in order to reduce carbon dioxide to carbohydrate. For the last step, we collect data and analyze them. Photocatalyst not only has the ability of reduction, but also has the ability of oxidization. Because it has this quality, we use it to oxidiz alcohol. Based on this reaction, we can examine the efficiency of the catalyst during the photocatalytic reaction and estimate the function of the material.
Kirmani, Ahmad R. "Surface Traps in Colloidal Quantum Dot Solar Cells, their Mitigation and Impact on Manufacturability". Diss., 2017. http://hdl.handle.net/10754/625510.
Pełny tekst źródłaLawless, Darren. "Photophysical studies on ultra-small semiconductor particles : CdS quantum dots, doped and undoped TiO₂2, and silver halides". Thesis, 1993. http://spectrum.library.concordia.ca/6080/1/NN84678.pdf.
Pełny tekst źródła