Artykuły w czasopismach na temat „Silver Nanoparticle Aggregates”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Silver Nanoparticle Aggregates”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wang, Wei, Manman Yang, Zongyuan Wang, Jinmao Yan i Changjun Liu. "Silver nanoparticle aggregates by room temperature electron reduction: preparation and characterization". RSC Adv. 4, nr 108 (2014): 63079–84. http://dx.doi.org/10.1039/c4ra11803k.
Pełny tekst źródłaBayram, Serene S., Klas Lindfors i Amy Szuchmacher Blum. "Tunable longitudinal modes in extended silver nanoparticle assemblies". Beilstein Journal of Nanotechnology 7 (26.08.2016): 1219–28. http://dx.doi.org/10.3762/bjnano.7.113.
Pełny tekst źródłaHeck, Christian, Yuya Kanehira, Janina Kneipp i Ilko Bald. "Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures". Molecules 24, nr 12 (24.06.2019): 2324. http://dx.doi.org/10.3390/molecules24122324.
Pełny tekst źródłaChen, Shao-Feng, i Hongyin Zhang. "Stability and sedimentation of silver nanoparticles in the presence of monovalent, divalent and trivalent electrolyte solutions". Water Science and Technology 70, nr 2 (24.05.2014): 361–66. http://dx.doi.org/10.2166/wst.2014.238.
Pełny tekst źródłaDiehn, Sabrina, Helmut Schlaad i Janina Kneipp. "Multivariate Imaging for Fast Evaluation of In Situ Dark Field Microscopy Hyperspectral Data". Molecules 27, nr 16 (12.08.2022): 5146. http://dx.doi.org/10.3390/molecules27165146.
Pełny tekst źródłaQuadrini, Fabrizio, Denise Bellisario, Loredana Santo i Giovanni Matteo Tedde. "Anti-Bacterial Nanocomposites by Silver Nano-Coating Fragmentation". Materials Science Forum 879 (listopad 2016): 1540–45. http://dx.doi.org/10.4028/www.scientific.net/msf.879.1540.
Pełny tekst źródłaMurthy, Jsr, Venkata Kumar T i Narayana Rao V. "COUROUPITA GUIANENSIS LEAF CALLUS EXTRACT MEDIATED SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF SILVER NANOPARTICLES." Asian Journal of Pharmaceutical and Clinical Research 10, nr 5 (1.05.2017): 126. http://dx.doi.org/10.22159/ajpcr.2017.v10i5.17066.
Pełny tekst źródłaKim, Hyunmin, Eunjoo Kim, Eunsook Choi, Chul Su Baek, Bokyung Song, Chang-Hee Cho i Sang Won Jeong. "Label-free C-reactive protein SERS detection with silver nanoparticle aggregates". RSC Advances 5, nr 44 (2015): 34720–29. http://dx.doi.org/10.1039/c5ra00040h.
Pełny tekst źródłaGill, Ron, Lijin Tian, Walter R. C. Somerville, Eric C. Le Ru, Herbert van Amerongen i Vinod Subramaniam. "Silver Nanoparticle Aggregates as Highly Efficient Plasmonic Antennas for Fluorescence Enhancement". Journal of Physical Chemistry C 116, nr 31 (sierpień 2012): 16687–93. http://dx.doi.org/10.1021/jp305720q.
Pełny tekst źródłaGill, Ron, Lijin Tian, Herbert van Amerongen i Vinod Subramaniam. "Emission enhancement and lifetime modification of phosphorescence on silver nanoparticle aggregates". Physical Chemistry Chemical Physics 15, nr 38 (2013): 15734. http://dx.doi.org/10.1039/c3cp50407g.
Pełny tekst źródłaLi, Hui, Ziyin Sun, Wenying Zhong, Nan Hao, Danke Xu i Hong-Yuan Chen. "Ultrasensitive Electrochemical Detection For DNA Arrays Based on Silver Nanoparticle Aggregates". Analytical Chemistry 82, nr 13 (lipiec 2010): 5477–83. http://dx.doi.org/10.1021/ac101193e.
Pełny tekst źródłaFurtaw, Michael D., Jon P. Anderson, Lyle R. Middendorf i Gregory R. Bashford. "Near-Infrared, Surface-Enhanced Fluorescence Using Silver Nanoparticle Aggregates in Solution". Plasmonics 9, nr 1 (7.07.2013): 27–34. http://dx.doi.org/10.1007/s11468-013-9594-y.
Pełny tekst źródłaCsete, Mária, Anikó Szalai, Edit Csapó, László Tóth, Anikó Somogyi i Imre Dékány. "Collective Plasmonic Resonances on Arrays of Cysteine-Functionalized Silver Nanoparticle Aggregates". Journal of Physical Chemistry C 118, nr 31 (25.07.2014): 17940–55. http://dx.doi.org/10.1021/jp503465r.
Pełny tekst źródłaWypij, Magdalena, Magdalena Świecimska, Hanna Dahm, Mahendra Rai i Patrycja Golinska. "Controllable biosynthesis of silver nanoparticles using actinobacterial strains". Green Processing and Synthesis 8, nr 1 (28.01.2019): 207–14. http://dx.doi.org/10.1515/gps-2018-0070.
Pełny tekst źródłaLiu, Cuicui, Xiaoli Zhang, Limei Li, Jingcheng Cui, Yu-e. Shi, Le Wang i Jinhua Zhan. "Silver nanoparticle aggregates on metal fibers for solid phase microextraction–surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons". Analyst 140, nr 13 (2015): 4668–75. http://dx.doi.org/10.1039/c5an00590f.
Pełny tekst źródłaSun, Lanlan, Dongxu Zhao, Meng Ding, ZhiKun Xu, Zhenzhong Zhang, Binghui Li i Dezhen Shen. "Controllable Synthesis of Silver Nanoparticle Aggregates for Surface-Enhanced Raman Scattering Studies". Journal of Physical Chemistry C 115, nr 33 (25.08.2011): 16295–304. http://dx.doi.org/10.1021/jp205545g.
Pełny tekst źródłaFu, Yunsheng, Xianglei Yu, Li Liu, Xianjie Tang, Junpeng Li i Guoyou Gan. "Study on Low-Temperature Conductive Silver Pastes Containing Bi-Based Glass for MgTiO3 Electronic Power Devices". Micromachines 14, nr 9 (25.08.2023): 1663. http://dx.doi.org/10.3390/mi14091663.
Pełny tekst źródłaGouyau, Jimmy, Raphaël E. Duval, Ariane Boudier i Emmanuel Lamouroux. "Investigation of Nanoparticle Metallic Core Antibacterial Activity: Gold and Silver Nanoparticles against Escherichia coli and Staphylococcus aureus". International Journal of Molecular Sciences 22, nr 4 (14.02.2021): 1905. http://dx.doi.org/10.3390/ijms22041905.
Pełny tekst źródłaZhang, Zhiliang, i Yongqiang Wen. "Controllable aggregates of silver nanoparticle induced by methanol for surface-enhanced Raman scattering". Applied Physics Letters 101, nr 17 (22.10.2012): 173109. http://dx.doi.org/10.1063/1.4764024.
Pełny tekst źródłaSzalai, Anikó, Áron Sipos, Edit Csapó, László Tóth, Mária Csete i Imre Dékány. "Comparative Study of Plasmonic Properties of Cysteine-Functionalized Gold and Silver Nanoparticle Aggregates". Plasmonics 8, nr 1 (23.08.2012): 53–62. http://dx.doi.org/10.1007/s11468-012-9420-y.
Pełny tekst źródłaLizoń, Anna, Magdalena Wytrwal-Sarna, Marta Gajewska i Ryszard Drożdż. "Silver Nanoparticle-Based Assay for the Detection of Immunoglobulin Free Light Chains". Materials 12, nr 18 (15.09.2019): 2981. http://dx.doi.org/10.3390/ma12182981.
Pełny tekst źródłaHuang, Ying-Ying, Sulbha K. Sharma, Tianhong Dai, Hoon Chung, Anastasia Yaroslavsky, Maria Garcia-Diaz, Julie Chang, Long Y. Chiang i Michael R. Hamblin. "Can nanotechnology potentiate photodynamic therapy?" Nanotechnology Reviews 1, nr 2 (1.03.2012): 111–46. http://dx.doi.org/10.1515/ntrev-2011-0005.
Pełny tekst źródłaLiu, Yun, Xiao-lan Wang, Meng-qing Wei, Hui Wang, Yu-peng Tian, Sheng-li Li, Zhao-ming Xue, Jia-xiang Yang i Lin Kong. "Enhanced two-photon absorption property of silver nanoparticle aggregates induced by a thioether derivative". Optical Materials 62 (grudzień 2016): 485–93. http://dx.doi.org/10.1016/j.optmat.2016.10.029.
Pełny tekst źródłaEwald, M., JM Gunn i M. Dantus. "Two-Photon Induced Emission From Silver Nanoparticle Aggregates on Thin Films and in Solution". Microscopy and Microanalysis 12, S02 (31.07.2006): 632–33. http://dx.doi.org/10.1017/s1431927606067195.
Pełny tekst źródłaKim, Joon Heon, Jung Su Park i Min-Gon Kim. "Time-dependent change of Hyper-Rayleigh Scattering from silver nanoparticle aggregates induced by salt". Chemical Physics Letters 600 (kwiecień 2014): 15–20. http://dx.doi.org/10.1016/j.cplett.2014.03.055.
Pełny tekst źródłaCong, Yang, Jun Fu, Zexin Zhang, Ziyong Cheng, Rubo Xing, Jian Li i Yanchun Han. "Fabrication of arrays of silver nanoparticle aggregates by microcontact printing and block copolymer nanoreactors". Journal of Applied Polymer Science 100, nr 4 (2006): 2737–43. http://dx.doi.org/10.1002/app.23063.
Pełny tekst źródłaXu, Teng, i Virginia A. Davis. "Rheology and Shear-Induced Textures of Silver Nanowire Lyotropic Liquid Crystals". Journal of Nanomaterials 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/939587.
Pełny tekst źródłaKarvonen, L., Y. Chen, A. Säynätjoki, K. Taiviola, A. Tervonen i S. Honkanen. "SERS-active silver nanoparticle aggregates produced in high-iron float glass by ion exchange process". Optical Materials 34, nr 1 (listopad 2011): 1–5. http://dx.doi.org/10.1016/j.optmat.2011.06.021.
Pełny tekst źródłaKim, Hyun-A., Byung-Tae Lee, So-Young Na, Kyoung-Woong Kim, James F. Ranville, Soon-Oh Kim, Eunhye Jo i Ig-Chun Eom. "Characterization of silver nanoparticle aggregates using single particle-inductively coupled plasma-mass spectrometry (spICP-MS)". Chemosphere 171 (marzec 2017): 468–75. http://dx.doi.org/10.1016/j.chemosphere.2016.12.063.
Pełny tekst źródłaSardar, Subrata, Md Anas, Sanhita Maity, Sampa Pal, Hasan Parvej, Shahnaz Begum, Ramkrishna Dalui, Nayim Sepay i Umesh Chandra Halder. "Silver nanoparticle modulates the aggregation of beta-lactoglobulin and induces to form rod-like aggregates". International Journal of Biological Macromolecules 125 (marzec 2019): 596–604. http://dx.doi.org/10.1016/j.ijbiomac.2018.12.039.
Pełny tekst źródłaSun, Lili, Changshun Wang, Yujia Pan, Tianyu Chen i Ziyao Lv. "Enhanced trans‐to‐cis photoisomerization quantum yield of azobenzene spatially confined in silver nanoparticle aggregates". Journal of Raman Spectroscopy 51, nr 5 (5.02.2020): 756–63. http://dx.doi.org/10.1002/jrs.5847.
Pełny tekst źródłaJiang, Xiaohong, Min Yang, Yanjing Meng, Wei Jiang i Jinhua Zhan. "Cysteamine-Modified Silver Nanoparticle Aggregates for Quantitative SERS Sensing of Pentachlorophenol with a Portable Raman Spectrometer". ACS Applied Materials & Interfaces 5, nr 15 (16.07.2013): 6902–8. http://dx.doi.org/10.1021/am401718p.
Pełny tekst źródłaBarbara, Aude, Fabien Dubois, Alain Ibanez, Lukas M. Eng i Pascal Quémerais. "SERS Correlation Spectroscopy of Silver Aggregates in Colloidal Suspension: Quantitative Sizing Down to a Single Nanoparticle". Journal of Physical Chemistry C 118, nr 31 (18.07.2014): 17922–31. http://dx.doi.org/10.1021/jp5024444.
Pełny tekst źródłaOlson, Jacob E., Adam S. Braegelman, Lei Zou, Matthew J. Webber i Jon P. Camden. "Capture of Phenylalanine and Phenylalanine-Terminated Peptides Using a Supramolecular Macrocycle for Surface-Enhanced Raman Scattering Detection". Applied Spectroscopy 74, nr 11 (8.10.2020): 1374–83. http://dx.doi.org/10.1177/0003702820937333.
Pełny tekst źródłaMerkl, Padryk, Shuzhi Zhou, Apostolos Zaganiaris, Mariam Shahata, Athina Eleftheraki, Thomas Thersleff i Georgios A. Sotiriou. "Plasmonic Coupling in Silver Nanoparticle Aggregates and Their Polymer Composite Films for Near-Infrared Photothermal Biofilm Eradication". ACS Applied Nano Materials 4, nr 5 (5.05.2021): 5330–39. http://dx.doi.org/10.1021/acsanm.1c00668.
Pełny tekst źródłaPilot, Roberto, i Michele Massari. "Silver nanoparticle aggregates: Wavelength dependence of their SERS properties in the first transparency window of biological tissues". Chemical Physics Impact 2 (czerwiec 2021): 100014. http://dx.doi.org/10.1016/j.chphi.2021.100014.
Pełny tekst źródłaKarpov, S. V., V. S. Gerasimov, A. S. Grachev, I. L. Isaev, O. P. Podavalova i V. V. Slabko. "Experimental manifestations of the correlation between the local structure of silver nanoparticle aggregates and their absorption spectra". Colloid Journal 69, nr 2 (kwiecień 2007): 170–79. http://dx.doi.org/10.1134/s1061933x07020056.
Pełny tekst źródłaSun, Lanlan, Yonghai Song, Li Wang, Cunlan Guo, Yujing Sun, Zhelin Liu i Zhuang Li. "Ethanol-Induced Formation of Silver Nanoparticle Aggregates for Highly Active SERS Substrates and Application in DNA Detection". Journal of Physical Chemistry C 112, nr 5 (luty 2008): 1415–22. http://dx.doi.org/10.1021/jp075550z.
Pełny tekst źródłaXia, Ning, Lin Liu, Yong Chang, Yuanqiang Hao i Xiaojin Wang. "4-Mercaptophenylboronic acid-induced in situ formation of silver nanoparticle aggregates as labels on an electrode surface". Electrochemistry Communications 74 (styczeń 2017): 28–32. http://dx.doi.org/10.1016/j.elecom.2016.11.013.
Pełny tekst źródłaTalekar, Sachin, Gandhali Joshi, Radhika Chougle, Basavaraj Nainegali, Shashikant Desai, Asavari Joshi, Shashikant Kambale i in. "Preparation of stable cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase and its use for silver nanoparticle synthesis from silver nitrate". Catalysis Communications 53 (sierpień 2014): 62–66. http://dx.doi.org/10.1016/j.catcom.2014.05.003.
Pełny tekst źródłaAzadikhah, Dariush, Ahmad Mohamadi Yalsuyi, Shubhajit Saha, Nimai Chandra Saha i Caterina Faggio. "Biochemical and Pathophysiological Responses in Capoeta capoeta under Lethal and Sub-Lethal Exposures of Silver Nanoparticles". Water 15, nr 3 (2.02.2023): 585. http://dx.doi.org/10.3390/w15030585.
Pełny tekst źródłaJiang, Jiachao, Xin Wang, Yuanyuan Zhang, Jiageng Zhang, Xiujun Gu, Shilong He, Shuo Duan, Jianli Ma, Lizhang Wang i Ping Luo. "The Aggregation and Dissolution of Citrate−Coated AgNPs in High Ammonia Nitrogen Wastewater and Sludge from UASB−Anammox Reactor". International Journal of Environmental Research and Public Health 19, nr 15 (2.08.2022): 9502. http://dx.doi.org/10.3390/ijerph19159502.
Pełny tekst źródłaJin, Furui, Hui Li i Danke Xu. "Enzyme-free fluorescence microarray for determination of hepatitis B virus DNA based on silver nanoparticle aggregates-assisted signal amplification". Analytica Chimica Acta 1077 (październik 2019): 297–304. http://dx.doi.org/10.1016/j.aca.2019.05.066.
Pełny tekst źródłaJiang, Xiaohong, Yongchao Lai, Min Yang, Heng Yang, Wei Jiang i Jinhua Zhan. "Silver nanoparticle aggregates on copper foil for reliable quantitative SERS analysis of polycyclic aromatic hydrocarbons with a portable Raman spectrometer". Analyst 137, nr 17 (2012): 3995. http://dx.doi.org/10.1039/c2an35713e.
Pełny tekst źródłaKirstein, Stefan, Hans von Berlepsch i Christoph Böttcher. "Photo-induced reduction of Noble metal ions to metal nanoparticles on tubular J-aggregates". International Journal of Photoenergy 2006 (2006): 1–7. http://dx.doi.org/10.1155/ijp/2006/47917.
Pełny tekst źródłaAbdelmoneim, Dina, Gemma Porter, Warwick Duncan, Khoon Lim, Richard Easingwood, Tim Woodfield i Dawn Coates. "Three-Dimensional Evaluation of the Cytotoxicity and Antibacterial Properties of Alpha Lipoic Acid-Capped Silver Nanoparticle Constructs for Oral Applications". Nanomaterials 13, nr 4 (12.02.2023): 705. http://dx.doi.org/10.3390/nano13040705.
Pełny tekst źródłaLi, Xiaoyue, Xiaotong Wang, Jiaxin Liu, Miaomiao Dai, Qianjun Zhang, Yang Li i Jian-An Huang. "Surface-enhanced Raman spectroscopy detection of organic molecules and in situ monitoring of organic reactions by ion-induced silver nanoparticle clusters". Physical Chemistry Chemical Physics 24, nr 5 (2022): 2826–31. http://dx.doi.org/10.1039/d1cp04857k.
Pełny tekst źródłaSetua, Palash, Rajib Pramanik, Souravi Sarkar, Chiranjib Ghatak, S. K. Das i Nilmoni Sarkar. "Synthesis of Silver Nanoparticle Inside the Nonaqueous Ethylene Glycol Reverse Micelle and a Comparative Study to Show the Effect of the Nanoparticle on the Reverse Micellar Aggregates through Solvation Dynamics and Rotational Relaxation Measurements". Journal of Physical Chemistry B 114, nr 22 (10.06.2010): 7557–64. http://dx.doi.org/10.1021/jp1008048.
Pełny tekst źródłaNeimash, V. B., H. D. Kupianskyi, I. V. Olkhovyk, V. I. Styopkin, P. M. Lytvynchuk, V. Yu Povarchuk, I. S. Roguts’kyi, Yu A. Furmanov i S. M. Titarenko. "Formation of Silver Nanoparticles in PVA-PEG Hydrogel under Electron Irradiation". Ukrainian Journal of Physics 64, nr 1 (30.01.2019): 41. http://dx.doi.org/10.15407/ujpe64.1.41.
Pełny tekst źródłaChumachenko, V., N. Kutsevol, Iu Harahuts, D. Soloviov, L. Bulavin, O. Yeshchenko, A. Naumenko, O. Nadtoka i A. Marinin. "Temperature Driven Transformation in Dextran-Graft-PNIPAM/Embedded Silver Nanoparticle Hybrid System". International Journal of Polymer Science 2019 (12.06.2019): 1–7. http://dx.doi.org/10.1155/2019/3765614.
Pełny tekst źródła