Gotowa bibliografia na temat „Silver Nanoparticle Aggregates”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Silver Nanoparticle Aggregates”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Silver Nanoparticle Aggregates"
Wang, Wei, Manman Yang, Zongyuan Wang, Jinmao Yan i Changjun Liu. "Silver nanoparticle aggregates by room temperature electron reduction: preparation and characterization". RSC Adv. 4, nr 108 (2014): 63079–84. http://dx.doi.org/10.1039/c4ra11803k.
Pełny tekst źródłaBayram, Serene S., Klas Lindfors i Amy Szuchmacher Blum. "Tunable longitudinal modes in extended silver nanoparticle assemblies". Beilstein Journal of Nanotechnology 7 (26.08.2016): 1219–28. http://dx.doi.org/10.3762/bjnano.7.113.
Pełny tekst źródłaHeck, Christian, Yuya Kanehira, Janina Kneipp i Ilko Bald. "Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures". Molecules 24, nr 12 (24.06.2019): 2324. http://dx.doi.org/10.3390/molecules24122324.
Pełny tekst źródłaChen, Shao-Feng, i Hongyin Zhang. "Stability and sedimentation of silver nanoparticles in the presence of monovalent, divalent and trivalent electrolyte solutions". Water Science and Technology 70, nr 2 (24.05.2014): 361–66. http://dx.doi.org/10.2166/wst.2014.238.
Pełny tekst źródłaDiehn, Sabrina, Helmut Schlaad i Janina Kneipp. "Multivariate Imaging for Fast Evaluation of In Situ Dark Field Microscopy Hyperspectral Data". Molecules 27, nr 16 (12.08.2022): 5146. http://dx.doi.org/10.3390/molecules27165146.
Pełny tekst źródłaQuadrini, Fabrizio, Denise Bellisario, Loredana Santo i Giovanni Matteo Tedde. "Anti-Bacterial Nanocomposites by Silver Nano-Coating Fragmentation". Materials Science Forum 879 (listopad 2016): 1540–45. http://dx.doi.org/10.4028/www.scientific.net/msf.879.1540.
Pełny tekst źródłaMurthy, Jsr, Venkata Kumar T i Narayana Rao V. "COUROUPITA GUIANENSIS LEAF CALLUS EXTRACT MEDIATED SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF SILVER NANOPARTICLES." Asian Journal of Pharmaceutical and Clinical Research 10, nr 5 (1.05.2017): 126. http://dx.doi.org/10.22159/ajpcr.2017.v10i5.17066.
Pełny tekst źródłaKim, Hyunmin, Eunjoo Kim, Eunsook Choi, Chul Su Baek, Bokyung Song, Chang-Hee Cho i Sang Won Jeong. "Label-free C-reactive protein SERS detection with silver nanoparticle aggregates". RSC Advances 5, nr 44 (2015): 34720–29. http://dx.doi.org/10.1039/c5ra00040h.
Pełny tekst źródłaGill, Ron, Lijin Tian, Walter R. C. Somerville, Eric C. Le Ru, Herbert van Amerongen i Vinod Subramaniam. "Silver Nanoparticle Aggregates as Highly Efficient Plasmonic Antennas for Fluorescence Enhancement". Journal of Physical Chemistry C 116, nr 31 (sierpień 2012): 16687–93. http://dx.doi.org/10.1021/jp305720q.
Pełny tekst źródłaGill, Ron, Lijin Tian, Herbert van Amerongen i Vinod Subramaniam. "Emission enhancement and lifetime modification of phosphorescence on silver nanoparticle aggregates". Physical Chemistry Chemical Physics 15, nr 38 (2013): 15734. http://dx.doi.org/10.1039/c3cp50407g.
Pełny tekst źródłaRozprawy doktorskie na temat "Silver Nanoparticle Aggregates"
Yuksel, Recep. "Sensitive And Quantitative Determination Of Cysteine By Surface Enhanced Raman Spectrometry Based On Their Induced Aggregates Of Gold And Silver Nanostructures". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613632/index.pdf.
Pełny tekst źródłaksel, Recep M.Sc., Department of Chemistry Supervisor: Prof. Dr. Mü
rvet Volkan September 2011, 76 pages The synthesis of noble metal nanostructures are an active research area and controlling the shape and the size is a challenging task. In this study, nanostructures with different morphologies were prepared using wet chemical synthesis techniques in the aqueous solutions. Gold and silver nanospheres were produced by reducing and capping agent trisodium citrate. Gold nanorods were synthesized by chemical reduction of HAuCl4 by ascorbic acid in the presence of cetyltrimethylammonium bromide (CTAB), AgNO3, and gold nanoseeds (in 1.5 nm diameter) and gold silver core shell nanorods were prepared by addition of silver atoms on the surface of gold nanorods in the presence of CTAB. Parameters that were critical to obtain homogeneous nanostructures were optimized. The characterization of the nanoparticles was performed by UV-VIS spectrometry, High Resolution - Transition Electron Microscopy (HR-TEM), Field Emission - Scanning Electron Microscopy (FE-SEM) and Energy Dispersive X-ray Spectroscopy (EDX). Besides, their electromagnetic enhancement properties were demonstrated through SERS measurement of cysteine. Self-assembly or assisted assembly of nanorods or nanospheres into organized arrays allows the realization of their collective properties that arise from the coupling of the optical and electronic properties of the neighbouring individual nanoparticles. In this study cysteine molecule was used as a linker molecule. The controlled addition of cysteine into the gold nanorod solution resulted in their preferential binding to the two ends of the gold nanorods and the formation of gold nanochains. In the usage of gold nanospheres on the other hand, cooperative hydrogen bonding of the cysteine molecules, resulted in the formation of gold nanoclusters. The assembly formation was demonstrated by UV&ndash
vis spectrometry and FE-SEM. Cysteine is a thiol group containing amino acid and deficiency of cysteine results in serious health problems. Therefore, determination of cysteine is an important issue. Herein we report two strategies for the quantitative determination of micromolar concentrations of cysteine by exploiting the interplasmon coupling in Au nanoparticles. One of them is a recently published colorimetric method and the other is a novel SERS method.
Książki na temat "Silver Nanoparticle Aggregates"
Photographic Science: Advances in Nanoparticles, J-aggregates, Dye Sensitization, and Organic Devices. Oxford: Oxford University Press, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Silver Nanoparticle Aggregates"
Li, Yang, Yunpeng Wang, Jinwei Tian i Jian-An Huang. "Detection of Cell-Derived Exosomes Via Surface-Enhanced Raman Scattering Using Aggregated Silver Nanoparticles". W Methods in Molecular Biology, 15–22. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3203-1_2.
Pełny tekst źródłaTani, Tadaaki. "Preparation and Performance of Silver Nanoparticles". W Photographic ScienceAdvances in Nanoparticles, J-Aggregates, Dye Sensitization, and Organic Devices, 210–32. Oxford University Press, 2011. http://dx.doi.org/10.1093/acprof:oso/9780199572953.003.0008.
Pełny tekst źródłaTani, Tadaaki. "Physical Properties of Silver Halides". W Photographic ScienceAdvances in Nanoparticles, J-Aggregates, Dye Sensitization, and Organic Devices, 46–88. Oxford University Press, 2011. http://dx.doi.org/10.1093/acprof:oso/9780199572953.003.0003.
Pełny tekst źródłaTani, Tadaaki. "Structure and Preparation of Silver Halide Grains". W Photographic ScienceAdvances in Nanoparticles, J-Aggregates, Dye Sensitization, and Organic Devices, 15–45. Oxford University Press, 2011. http://dx.doi.org/10.1093/acprof:oso/9780199572953.003.0002.
Pełny tekst źródłaTani, Tadaaki. "Silver Halide Nanocrystals and Nuclear Particle Detectors". W Photographic ScienceAdvances in Nanoparticles, J-Aggregates, Dye Sensitization, and Organic Devices, 194–209. Oxford University Press, 2011. http://dx.doi.org/10.1093/acprof:oso/9780199572953.003.0007.
Pełny tekst źródłaGuzmán, Katherine, Brajesh Kumar, Marcelo Grijalva, Alexis Debut i Luis Cumbal. "Ascorbic Acid-assisted Green Synthesis of Silver Nanoparticles: pH and Stability Study". W Green Chemistry - New Perspectives [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107202.
Pełny tekst źródłaStreszczenia konferencji na temat "Silver Nanoparticle Aggregates"
Smejkal, Petr, Blanka Vlckova, Ioana Pavel, Martin Moskovits, Magdalena Sladkova, Karolina Siskova i Miroslav Slouf. "Nanocomposites With Strong Optical Resonances: Silver Nanoparticles-Organic Molecules Systems". W ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47029.
Pełny tekst źródłaMehigan, Sam, i Eithne McCabe. "A consideration of silver nanoparticle aggregates with a view to SERS". W SPIE Photonics Europe, redaktorzy David L. Andrews, Jean-Michel Nunzi i Andreas Ostendorf. SPIE, 2014. http://dx.doi.org/10.1117/12.2059866.
Pełny tekst źródłaKim, Joon Heon, Jung Su Park i Min-Gon Kim. "Strong hyper-Rayleigh scattering from silver nanoparticle aggregates to be used for the optical bio-sensing assay". W Nano-Bio Sensing, Imaging and Spectroscopy, redaktorzy Shin Won Kang, Seung-Han Park, Luke P. Lee, Ki-Bong Song i Yo Han Choi. SPIE, 2013. http://dx.doi.org/10.1117/12.2018703.
Pełny tekst źródłaMa, Qianli, i Haisheng Fang. "Viscosity Prediction of Water-Based Silver Nanofluid Using Equilibrium Molecular Dynamics". W ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65831.
Pełny tekst źródłaZuojun Zhang, Li Chen, Gang Chen, Chunhong Lai i Hui Zhou. "Silver nanoparticles aggregate on passivated copper foil for Surface-enhanced Raman scattering". W 2013 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2013. http://dx.doi.org/10.1109/nems.2013.6559780.
Pełny tekst źródłaMelnikau, D., D. Savateeva, Y. K. Gun'ko i Y. P. Rakovich. "Enhanced chiroptical properties of a hybrid material consisting of J-aggregates and silver nanoparticles". W 2014 16th International Conference on Transparent Optical Networks (ICTON). IEEE, 2014. http://dx.doi.org/10.1109/icton.2014.6876652.
Pełny tekst źródłaStarovoytov, A. A., R. D. Nabiullina i I. A. Gladskikh. "Features of Optical Properties of Organometallic Films of Pseudoisocyanine J-aggregates and Inhomogeneous Ensembles of Silver Nanoparticles". W 2018 International Conference Laser Optics (ICLO). IEEE, 2018. http://dx.doi.org/10.1109/lo.2018.8435544.
Pełny tekst źródłaPolischuk, Vladimir A., Anton A. Starovoytov, Rezida D. Nabiullina, Igor A. Gladskih, Peter S. Parfenov i Aisylu N. Kamalieva. "Plasmon-exciton interaction in the thin film of inhomogeneous ensemble of silver nanoparticles and cyanine J-aggregates". W Nanophotonics, redaktorzy David L. Andrews, Jean-Michel Nunzi, Andreas Ostendorf i Angus J. Bain. SPIE, 2018. http://dx.doi.org/10.1117/12.2307246.
Pełny tekst źródłaArif, Moh Syaiful, Erika Risdayana, Ika Yekti Liana Sari i Aman Sentosa Panggabean. "Synthesis of silver nanoparticles (AgNPs) using aggregate mangrove leaf extract (Sonneratia alba) for colorimetric analysis of chloramphenicol". W THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICS AND SCIENCES (THE 3RD ICMSc): A Brighter Future with Tropical Innovation in the Application of Industry 4.0. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0112721.
Pełny tekst źródła