Rozprawy doktorskie na temat „Silicon Thin Film Technology”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Silicon Thin Film Technology”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Garbayo, Senosiain Iñigo. "Integration of thin film based micro solid oxide fuel cells in silicon technology". Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/131944.
Pełny tekst źródłaEn las últimas décadas, ha habido una gran proliferación de aparatos portátiles. Entre ellos, cabe destacar los aparatos destinados a electrónica de consumo, como por ejemplo teléfonos móviles, reproductores de música, libros electrónicos, etc., los cuales están actualmente muy extendidos. De cara a proporcionar a estos aparatos con suficiente autonomía, se ha de integrar una fuente de alimentación en el mismo dispositivo. Esto urge a buscar posibles fuentes de alimentación con capacidad de integración, y que a su vez satisfagan los requerimientos básicos de alta densidad de potencia, gran tiempo de vida y bajo coste. Hasta ahora, la principal fuente de alimentación utilizada en este tipo de dispositivos ha sido las baterías. Sin embargo, conforme aumentan las funcionalidades, la necesidad de mayor capacidad de suministro (o almacenamiento) energético aumenta. Es más, justo ahora entrando en la cuarta generación (4G) de la electrónica de consumo, diversos estudios sugieren que las baterías, ya optimizadas, probablemente están alcanzando su límite en densidad energética, con lo que no podrían ya considerarse más para alimentar de manera viable los dispositivos más avanzados. En este sentido, en los últimos años muchos grupos de investigación han puesto su atención en el desarrollo de alternativas viables que puedan mejorar las prestaciones de las baterías como fuente de alimentación de dispositivos de altas prestaciones que trabajen en el régimen de baja potencia (1 − 20W). Debido a su alto tiempo de vida, alta densidad energética y capacidad de integración, probablemente la alternativa más prometedora es el desarrollo de micro pilas de combustible. En particular, entre los diferentes tipos, las micro pilas de combustible de óxido sólido (micro SOFC, de sus siglas en inglés), presentan los mayores valores de densidad energética específica (por unidad de masa y/o volumen), mayormente debido a su alta temperatura de operación y la consecuente capacidad de operar directamente con combustibles hidrocarburos. El diseño de micro SOFC más extendido está basado en la fabricación de membranas auto soportadas, las cuales integran ya todas las partes funcionales de la pila, es decir, un electrolito fino cubierto por un ánodo y un cátodo (uno a cada lado). Estas membranas, de grosor muy fino (menos de 1m), normalmente se encuentran soportadas en plataformas de silicio micro mecanizadas, de manera que se facilita un fácil acceso al combustible directamente a ambos lados de la membrana, a la vez que se proporciona robustez al sistema. El uso de silicio como material de soporte es muy conveniente, ya que es el material más utilizado en micro fabricación, por lo que existe una amplia y altamente desarrollada serie de técnicas para su micro mecanizado. Esta tesis engloba el diseño, la fabricación y la caracterización de micro pilas de combustible de óxido sólido basadas en capas delgadas, e integradas en tecnología de silicio. El desarrollo de las micro SOFC se ha llevado a cabo de tres formas diferentes: (i.) presentando nuevos diseños para la optimización de las membranas auto soportadas, (ii.) fabricando electrolitos en capa delgada estables termo-mecánicamente y (iii.) sugiriendo e implementando en el dispositivo final nuevos materiales de electrodo en capa delgada más efectivos y viables que los actuales. En primer lugar, se fabricaron dos diseños de membrana diferentes, usando tecnología de micro fabricación de silicio. En el primero de los diseños, se fabricaron membranas cuadradas básicas. En este caso, el trabajo más importante fue el de la adaptación del proceso de fabricación al flujo de fabricación de la Sala Blanca del IMB-CNM (CSIC). Más adelante, se desarrolló un nuevo diseño de membrana de gran superficie, basado en el uso de mallas de nervios de silicio dopado como soporte robusto. Así, se consiguieron fabricar membranas auto soportadas con un área total de hasta 30 veces mayor que las conseguidas en el diseño básico anterior. Para el electrolito, se usó zirconia estabilizada con ytria (YSZ, de sus siglas en inglés), el material estado del arte en SOFC de gran volumen. Se fabricaron membranas auto soportadas de YSZ con gran reproducibilidad, obteniendo capas delgadas densas, cristalinas y de grosor homogéneo. Estas características son básicas para un buen funcionamiento del electrolito, ya que así se evitan posibles cortocircuitos entre los dos electrodos y/o fugas de gas. Además, se realizó un estudio exhaustivo de la estabilidad termo-mecánica de las membranas de YSZ, ya que las temperaturas de operación de la pila son de varios centenares de ℃. En particular, se prestó atención especial a la evolución de los estreses en función de las condiciones de fabricación de la capa de YSZ, para as. evitar posibles fallos en los continuos ciclados térmicos. Finalmente, se realizó un estudio de las propiedades electroquímicas de las membranas de YSZ fabricadas. Normalmente, se establece un valor de resistencia específica por área de 0.15 Ω cm2 para cada una de las capas funcionales de las pilas. En este caso, este valor objetivo se obtuvo a temperaturas de 400℃ en membranas de YSZ de 250 nm de grosor. De esta forma, se comprobó que estas capas pueden funcionar perfectamente como electrolito en todo el rango de operación de las micro SOFC, que normalmente se establece en 400 − 800℃. A continuación, se probaron diversos materiales como electrodos en capa delgada, para su implementación en micro SOFC. En primer lugar, aunque éstos han sido usados frecuentemente por otros autores en estudios previos de micro SOFC, se comprobó que los electrodos metálicos en capa delgada (capas de Pt poroso) son inestables a las temperaturas de operación de las micro SOFC. Por lo tanto, esto hizo que se probaran materiales alternativos, bien para el ánodo o para el cátodo. En particular, para el cátodo se fabricaron capas delgadas porosas de La(0.6)Sr(0.4)CoO(3-δ) (LSC) y se integraron en membranas auto soportadas de YSZ (electrolito). La conductividad eléctrica que se midió en estas capas es adecuada, y no se observó degradación en todo el rango de temperaturas de operación. Así mismo, se comprobó la estabilidad termo mecánica del sistema fabricando membranas simétricas de LSC/YSZ/LSC y realizándoles ciclados térmicos hasta los 700℃. Por último, se midieron las propiedades electroquímicas de las bi-capas cátodo/electrolito, obteniendo los valores objetivo de resistencia específica por área (0.30 Ωcm2) a temperaturas de 700℃. Para el ánodo, se fabricaron capas delgadas porosas de un cermet de Pt y Ce0(.8)Gd(0.2)O(1.9-δ) (PtKCGO). Las capas de CGO se tuvieron que fabricar de grosores por debajo de 1 m, debido a problemas de delaminación del sustrato. Se aseguró una buena inter-conexión entre el Pt y el CGO mediante tratamientos térmicos. Las propiedades electroquímicas se midieron nuevamente fabricando membranas simétricas, esta vez Pt-CGO/YSZ/CGO-Pt. Así mismo, el objetivo de 0.30 Ωcm2 se obtuvo de nuevo a temperaturas alrededor de 700℃. Además, en esta tesis se llevó a cabo la fabricación de colectores de corriente térmicamente estables y a su vez compatibles con la configuración básica de una micro SOFC (membranas auto soportadas). Para ello, se usó un proceso de litografía no convencional, llamado "nanosphere lithography". De esta forma se fabricaron mallas de Pt denso perfectamente ordenadas en ambos lados de las membranas. La estabilidad térmica y la durabilidad en el tiempo de estas mallas fue igualmente probada mediante medidas en condiciones de trabajo reales de micro SOFC. Por último, en este trabajo se presentó una micro SOFC completamente basada en cerámicas por primera vez. Las tres capas funcionales de la pila, es decir, tanto el cátodo, como el electrolito y el ánodo, se fabricaron basándose en los estudios previos de cada material. Así, se fabricaron membranas auto soportadas siguiendo la configuración LSC/YSZ/CGO-Pt. Además, se implementaron mallas de Pt en ambos lados para asegurar una buena colección de corriente. La estabilidad termo mecánica de la membrana se midió hasta 750℃, extendiendo así el rango de temperaturas de operación reportado anteriormente en dispositivos finales de micro SOFC y en consecuencia permitiendo el uso de electrodos cerámicos. Se midieron valores de densidad de potencia de 100 mW/cm2 a 750℃, usando H2 como combustible y aire sintético como oxidante. Estos resultados representan los primeros valores de potencia presentados en micro SOFC basadas en cerámicas, abriendo as. la posibilidad de desarrollar una segunda generación de micro SOFC más viables térmicamente.
McNeil, Vincent Maurice. "A thin-film silicon microaccelerometer fabricated using electrochemical etch-stop and wafer bonding technology". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12013.
Pełny tekst źródłaIncludes bibliographical references (p. 343-360).
by Vincent Maurice McNeil.
Ph.D.
Zhang, Peng. "Development and fabrication of vertical thin film transistors based on low temperature polycrystalline silicon technology". Rennes 1, 2012. https://ecm.univ-rennes1.fr/nuxeo/site/esupversions/9b61a7a5-6013-4028-af42-2d95a9366ca6.
Pełny tekst źródłaCe travail porte sur le développement de transistors en couches minces verticaux (VTFTs), du procédé de fabrication à l'analyse des caractéristiques électriques. Les transistors sont réalisés à partir de silicium polycristallin déposé et cristallisé en utilisant une technologie basse température (T ≤ 600°C). La première étape de ce travail consiste à la fabrication et la caractérisation de VTFTs obtenus par rotation de 90° des transistors à couches minces latéraux (LTFTs). La faisabilité technologique de VTFTs est alors validée, et un rapport ION/IOFF d'environ 10³ est obtenu. L'analyse des résultats de caractérisation électrique a mis en évidence que ce fort courant à l'état bloquant IOFF est principalement dû à la grande zone de recouvrement entre source et drain. La deuxième étape du travail réside dans la suppression partielle de cette zone de recouvrement qui aboutit à un rapport ION/IOFF proche de 10⁵. Dans la troisième partie de ce travail, une nouvelle architecture de transistors verticaux est proposée, qui élimine totalement la zone de recouvrement. Les effets de différents paramètres sont étudiés, notamment l'influence de l'épaisseur de la couche active, de la couche d'isolation, et de la dimension géométrique. Les transistors optimisés mettent en évidence un rapport ION/IOFF supérieur à 10⁵ avec une réduction du courant à l'état bloquant, une grande stabilité et une bonne reproductibilité du procédé technologique. Des transistors verticaux de type P et N ont également été réalisés. Ils ont montré des caractéristiques électriques symétriques, qui les rendent utilisables dans des applications similaires à la technologie CMOS
Meng, Zhiguo. "Metal-induced unilaterally crystallized polycrystalline silicon thin-film transistor technology and application to flat-panel displays /". View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202002%20MENG.
Pełny tekst źródłaCheng, Chun Fai. "Modeling of polysilicon thin-film transistors formed by grain enhancement technology-metal-induced lateral crystallization /". View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202004%20CHENG.
Pełny tekst źródłaManley, Robert G. "Development and modeling of a low temperature thin-film CMOS on glass /". Online version of thesis, 2009. http://hdl.handle.net/1850/11202.
Pełny tekst źródłaSingh, Siddhartha. "Phosphorus implants for off-state improvement of SOI CMOS fabricated at low temperature /". Online version of thesis, 2009. http://hdl.handle.net/1850/11427.
Pełny tekst źródłaTengdelius, Lina. "Growth and Characterization of ZrB2 Thin Films". Licentiate thesis, Linköpings universitet, Tunnfilmsfysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-98308.
Pełny tekst źródłaMeyer, Raphaël. "The advanced developments of the Smart Cut™ technology : fabrication of silicon thin wafers & silicon-on-something hetero-structures". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI033/document.
Pełny tekst źródłaAt first, the thesis studies the kinetics of Smart Cut™ in silicon implanted with hydrogen ions for annealing temperature in the range 500°C-1300°C. The kinetics is characterized by using a specially-dedicated furnace and by considering laser annealing. Based on the related characterization and observations, a physical model is established based on the behavior of implanted hydrogen during annealing. The model is strengthened by SIMS characterization focused on the evolution of hydrogen during annealing and on numerical calculations. Additionally, the model proposes an explanation for the properties of the obtained films as a function of the annealing conditions, based on optical microscope and AFM observations and bonding energy characterization. Based on this splitting model, two innovative processes for fabrication of silicon films are proposed. The first process allows to produce films of silicon on sapphire and films of silicon on glass by considering a laser annealing. The second produces foils of monocrystalline silicon by liquid phase epitaxial growth on implanted silicon substrate. The study of the first process proves for the first time the possibility to apply the Smart Cut™ for substrates of implanted silicon. The resulting films present large surface of transferred films (up to 200 mm wafers), which is very interesting in an industrial perspective. The study proposes different characterization of the films obtained by this process (AFM, optical profilometry and 4 probe measurement). The second process is demonstrated by using a chamber of liquid phase epitaxial growth of silicon (deposition temperature superior to 1410°C) in order to deposit liquid silicon on implanted silicon substrates. The obtained films show a high degree of epitaxial growth (up to 90% of the film as characterized by EBSD) and show a thickness as low as 100µm. Additionally the detachment by Smart Cut of the deposited films is demonstrated
Ahmed, Fatema. "Structural properties and optical modelling of SiC thin films". University of the Western Cape, 2020. http://hdl.handle.net/11394/7284.
Pełny tekst źródłaAmorphous silicon carbide (a-SiC) is a versatile material due to its interesting mechanical, chemical and optical properties that make it a candidate for application in solar cell technology. As a-SiC stoichiometry can be tuned over a large range, consequently is its bandgap. In this thesis, amorphous silicon carbide thin films for solar cells application have been deposited by means of the electron-beam physical vapour deposition (e-beam PVD) technique and have been isochronally annealed at varying temperatures. The structural and optical properties of the films have been investigated by Fourier transform Infrared and Raman spectroscopies, X-ray diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and UV-VIS-NIR spectroscopy. The effect of annealing is a gradual crystallization of the amorphous network of as-deposited silicon carbide films and consequently the microstructural and optical properties are altered. We showed that the microstructural changes of the as-deposited films depend on the annealing temperature. High temperature enhances the growth of Si and SiC nanocrystals in amorphous SiC matrix. Improved stoichiometry of SiC comes with high band gap of the material up to 2.53 eV which makes the films transparent to the visible radiation and thus they can be applied as window layer in solar cells.
Hecht, Mandy. "Particulate systems and thin-film based platforms". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17329.
Pełny tekst źródłaThe combination of fluorescence and nanomaterials has developed into an emerging research area. Nonetheless until now the step from an organic sensory molecule to a final sensor format is a complex endeavor. This thesis aimed at the preparation of particulate and thin-film based platforms for various analytes through combining the features of an appropriate host material with outstanding properties of dyes concomitant with sensitive fluorescence detection techniques. In particular, pH sensitive fluorescent probes were sterically immobilized into a thin membrane. The dip-stick allows the assessment upon change in pH with the eye. Especially a probe working at high basic pH range was converted into a water-soluble analogue and was directly applied at the growth front of silica biomorphs to detect local pH changes. But also particulate structures are suitable host materials. It is shown how the silica matrix of nanoparticles lead to improved optical properties for embedded dyes. The interactions of silica and fluorescent dyes within the pores of mesoporous particles were exploited to develop an actual sensor format based detection of TATP. In another approach it was possible to detect mercury ions in water. Heavy metal ions were also successfully detected in a quencher displacement assay involving receptor-dye functionalized silica nanoparticles. The impact of the unique surface properties of cellulose microparticles was shown by a fluorescent dye which allows an assessment of the surface functional groups and microenvironment through the reactivity and its changes in the optical properties. The performance of the prepared materials were evaluated mostly by spectroscopic methods and if possible assessed in terms of sensitivity, selectivity and response time. The newly developed and investigated materials based on fluorescent particulate and thin-films show the facile application of innovative sensor probes for potentially sensing devices.
Khoury, Rasha. "Nanometer scale point contacting techniques for silicon Photovoltaic devices". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX070/document.
Pełny tekst źródłaThe use of point contacts has made the Passivated Emitter and Rear Cell design one of the most efficient monocrystalline-silicon photovoltaic cell designs in production. The main feature of such solar cell is that the rear surface is partially contacted by periodic openings in a dielectric film that provides surface passivation. However, a trade-off between ohmic losses and surface recombination is found. Due to the technology used to locally open the contacts in the passivation layer, the distance between neighboring contacts is on the order of hundreds of microns, introducing a significant series resistance.In this work, I explore the possibility and potential advantages of using nanoscale contact openings with a pitch between 300 nm to 10 µm. Analytic and numerical simulations done during the course of this thesis have shown that such nanoscale contacts would result in negligible ohmic losses while still keeping the surface recombination velocity Seff,rear at an acceptable level, as long as the recombination velocity at the contact (Scont) is in the range from 103-105 cm/s. To achieve such contacts in a potentially cost-reducing way, my experimental work has focused on the use of polystyrene nanospheres as a sacrificial mask.The thesis is therefore divided into three sections. The first section develops and explores processes to enable the formation of such contacts using various nanosphere dispersion, thin-film deposition, and layer etching processes. The second section describes a test device using a thin-film amorphous silicon NIP diode to explore the electrical properties of the point contacts. Finally, the third section considers the application of such point contacts on crystalline silicon by exploring localized doping through the nanoholes formed.In the first section, I have explored using polystyrene nanoparticles (NPs) as a patterning mask. The first two tested NPs deposition techniques (spray-coating, spin-coating) give poorly controlled distributions of nanospheres on the surface, but with very low values of coverage. The third tested NPs deposition technique (floating transfer technique) provided a closely-packed monolayer of NPs on the surface; this process was more repeatable but necessitated an additional O2 plasma step to reduce the coverage area of the sphere. This was performed using matrix distributed electron cyclotron resonance (MD-ECR) in order to etch the NPs by performing a detailed study.The NPs have been used in two ways; by using them as a direct deposition mask or by depositing a secondary etching mask layer on top of them.In the second section of this thesis, I have tested the nanoholes as electrical point-contacts in thin-film a-Si:H devices. For low-diffusion length technologies such as thin-film silicon, the distance between contacts must be in the order of few hundred nanometers. Using spin coated 100 nm NPs of polystyrene as a sacrificial deposition mask, I could form randomly spaced contacts with an average spacing of a few hundred nanometers. A set of NIP a-Si:H solar cells, using RF-PECVD, have been deposited on the back reflector substrates formed with metallic layers covered with dielectrics having nanoholes. Their electrical characteristics were compared to the same cells done with and without a complete dielectric layer. These structures allowed me to verify that good electrical contact through the nanoholes was possible, but no enhanced performance was observed.In the third section of this thesis, I investigate the use of such nanoholes in crystalline silicon technology by the formation of passivated contacts through the nanoholes. Boron doping by both thermal diffusion and ion implantation techniques were investigated. A thermally grown oxide layer with holes was used as the doping barrier. These samples were characterized, after removing the oxide layer, by secondary electron microscopy (SEM) and conductive probe atomic force microscopy (CP-AFM)
Hemel, Audrey. "Propriétés mécaniques de membranes d’épaisseur nanométriques : construction et mise au point d’un essai de gonflement". Thesis, Vandoeuvre-les-Nancy, INPL, 2010. http://www.theses.fr/2010INPL060N/document.
Pełny tekst źródłaA new mechanical testing device of free standing membranes by Bulge Test has been built at Institute Jean Lamour in order to investigate the mechanical properties of thin films of nanometric thickness. The Bulge Test measures the deflection of a free standing membrane to which a differential atmospheric pressure has been applied. (The specimens are prepared from film on substrate deposits by cutting a window within the substrate by standard microelectronic techniques.) We aim of achieve tests from room temperature to ~ 900°C. The main technical difficulty met during this work was to develop a non perturbating method of measurement of the film bulge. Two different techniques were tested: point measurement and 2D interferometry using a spherical reference. The first technique, however simple, was difficult to practice, especially in the case of buckling membranes. The second method required a detailed analysis of the whole optical system (image distorsion, calculation of interferograms) leading to a simple measurement method, suitable for integration in the acquisition and command chain of the device, followed by an off line full treatment.The operating method was used on two different sets of specimens: fragile silicon nitride and silicon membranes in order to test the reproducibility of the device. Polycrystalline gold thin films were then used to study the early stage of plastic strain
Nos, Aguilà Oriol. "HWCVD Technology Development Addressed to the High Rate Deposition of mi-c-Si:H". Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/98346.
Pełny tekst źródłaEl primer bloc d'aquesta tesi es centra en l'estudi del procés de degradació dels filaments de tungstè catalítics en el camp de la deposició de silici amb la tècnica de dipòsit químic en fase vapor assistida per filament calent (HWCVD). També es tractarà el desenvolupament de solucions tecnològiques dirigides a la protecció filaments i al reemplaçament d’aquests de forma automàtica, sense interrompre el procés. El segon bloc tracta sobre l’escalat de la tècnica HWCVD cap a gran àrea i sobre l'existència d'una llei d'escala que permeti la deposició de silici microcristal•lí a altes velocitats, tot preservant la qualitat del material.
Panda, Durga Prasanna. "Nanocrystalline silicon thin film transistors". [Ames, Iowa : Iowa State University], 2006.
Znajdź pełny tekst źródłaBauza, M. "Nanocrystalline silicon thin film transistors". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1385744/.
Pełny tekst źródłaSaxena, Shubham. "Nanolithography on thin films using heated atomic force microscope cantilevers". Thesis, Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-08302006-223629/.
Pełny tekst źródłaBozeat, Robert John. "Thin film optical waveguides on silicon". Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320551.
Pełny tekst źródłaAriel, Nava. "Integrated thin film batteries on silicon". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33612.
Pełny tekst źródłaIncludes bibliographical references (p. 147-158).
Monolithic integration has been implemented successfully in complementary metal oxide semiconductor (CMOS) technology and led to improved device performance, increased reliability, and overall cost reduction. The next element to be incorporated on the silicon chip is the power unit; possibly as part of the back end process of the very large scale integrated (VLSI) circuits' production. This thesis describes the work done in developing and studying thin film integrated lithium ion batteries compatible with microelectronics with respect to the material system employed, the cells' fabrication methods, and performance. The project consisted of three stages; first, a material system new to the battery application field was explored and power cells were fabricated and characterized. In the second stage, the fabrication process of the first material system cells was optimized thereby improving their performance. The third stage dealt with a more conventional battery material system, utilizing thin film technology to fabricate and explore power cells.
(cont.) All the cells fabricated in this work were created using microelectronic technology and were characterized by thin film analysis techniques and by measurement equipment commonly used for microelectronic device testing. The cells were fabricated in four sizes of active areas: 5x5 mm², 2x2 mm², lxl mm², and 0.5x0.5 mm². The first material system consisted of a novel lithium-free electrolyte in the form of an ultra-thin SiO₂ layer, thermally grown from sacrificial polysilicon layer on a doped polysilicon anode. The concept of SiO₂ as an electrolyte is innovative since common solid state lithium and lithium ion batteries consist of 1-2 ptm thick lithium-containing electrolytes. The controlled transport of lithium through SiO₂, 9-40 nm thick, was studied for electrolyte application. The fabricated LiCoO₂/SiO₂/polysilicon cells were successfully charged and discharged. This stage of the project demonstrated the concept of an ultra-thin lithium free electrolyte layer and introduces SiO₂ as an interesting candidate material. The second stage of the project focused on improving the LiCoO₂/SiO₂/polysilicon cell's performance and optimizing its fabrication process.
(cont.) Chemical mechanical polishing (CMP), a typical planarization method in microelectronics, new to the battery application field, was introduced in order to enhance the cell's properties and performance. LiCoO₂/SiO₂/polysilicon cells consisting of Si0₂ layers 7-40 nm thick were studied. Cells with the planarized polysilicon anode were characterized and the planarization effect was evaluated. This stage demonstrates the importance of interfacial quality in thin film batteries and the advantages incorporation of CMP as a planarization step in the fabrication process. Finally, the third stage of the project focused on applying the thin film technology knowledge and expertise to a more commonly used material system V₂0₅/LiPON/LiCoO₂. With the aim of reducing interfacial roughness, a surface morphology study of V₂0₅ was performed, tailoring different deposition conditions and surface morphology. Implementing the optimized conditions obtained from this analysis, a V₂0₅/LiPON/LiCoO₂ rocking-chair battery was studied next. The cells consisted of approximately 100 or 350 nm thick lithium phosphorus oxynitride (LiPON) electrolyte.
(cont.) This stage demonstrated the advantage of thin film technology in reducing film thickness and the performance enhancement achieved. The work described in this thesis approached the thin film battery subject from the microelectronic perspective, in order to "bring the battery into the clean room".
by Nava Ariel.
Ph.D.
Lo, Hsi-Wen Tai Yu-Chong Tai Yu-Chong. "Thin film silicon for implantable electronics /". Diss., Pasadena, Calif. : California Institute of Technology, 2009. http://resolver.caltech.edu/CaltechETD:etd-09242008-151715.
Pełny tekst źródłaBenachir, Mohcine. "Simulation numérique et modélisation des transistors MOS sur silicium sur isolant à inversion volumique". Grenoble INPG, 1989. http://www.theses.fr/1989INPG0090.
Pełny tekst źródłaMarin, Cristiane. "Revestimentos protetores de nitreto de silício para aplicações tribológicas extremas". reponame:Repositório Institucional da UCS, 2010. https://repositorio.ucs.br/handle/11338/567.
Pełny tekst źródłaSubmitted by Marcelo Teixeira (mvteixeira@ucs.br) on 2014-06-03T19:57:31Z No. of bitstreams: 1 Dissertacao Cristiane Marin.pdf: 10200632 bytes, checksum: 55a17a7df0f8900cefa2a80a1fe4c086 (MD5)
Made available in DSpace on 2014-06-03T19:57:31Z (GMT). No. of bitstreams: 1 Dissertacao Cristiane Marin.pdf: 10200632 bytes, checksum: 55a17a7df0f8900cefa2a80a1fe4c086 (MD5)
The performance of engineering components is closely tied to surface phenomena, because it acts as an interface between the component and the environment that surrounds it. The choice of a suitable material with surface properties is critical to its functionality. In this study the physicochemical, structural and mechanical properties of silicon nitride films deposited by radio frequency reactive magnetron sputtering before and after thermal annealing in 18O2 were analyzed using different methods, such as nanohardness, X-ray diffraction, profilometry resonant nuclear reaction, nanoindentation, Rutherford backscattering spectrometry, photoelectron spectroscopy and X-ray induced X-ray reflectometry The Si3N4 films deposited are essentially amorphous, stoichiometric and free of contaminants for various deposition parameters, with hardness values ranging from 16.5 GPa 22 GPa, depending mainly on the deposition temperature of films. After 18O2 annealing at 1000°C, films hardness converged to 21 GPa, independently of the deposition temperature, which is explained on the basis of crystallization of the films at this annealing temperature. Furthermore, oxygen is incorporated only in the 7.5 nm film of Si3N4, forming silicon oxynitride on the surface of the film, indicating good oxidation resistance at high temperature. Finally, the elastic strain to failure H3/E2, which mimics the wear resistance of the film, doubles after the 1000°C annealing. These observations show the great potential of silicon nitride as a hard coating for high temperature applications.
Inns, Daniel Photovoltaics & Renewable Energy Engineering Faculty of Engineering UNSW. "ALICIA polycrystalline silicon thin-film solar cells". Publisher:University of New South Wales. Photovoltaics & Renewable Energy Engineering, 2007. http://handle.unsw.edu.au/1959.4/43600.
Pełny tekst źródłaLau, S. P. "Thin film silicon carbide for electroluminescent devices". Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637853.
Pełny tekst źródłaAschenbeck, Jens. "Novel amorphous silicon thin film transistor structures". Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620172.
Pełny tekst źródłaStragier, Anne-Sophie. "Elaboration et caractérisation de structures Silicium-sur-Isolant réalisées par la technologie Smart Cut™ avec une couche fragile enterrée en silicium poreux". Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0108.
Pełny tekst źródłaAs scaling of microelectronic devices is confronted from now to fundamental limits, improving microelectronic systems performances is largely based nowadays on complex and innovative stack realization to offer more compaction and flexibility to structures. Growing interest in the fabrication of innovative temporary structures, allowing for example double sided layer processing, lead us to investigate the capability to combine one technology of thin single crystalline layer transfer, i.e. the Smart Cut™ technology, and partial porosification of silicon substrate in order to develop an original double layer transfer technology of thin single crystalline silicon film. To this purpose, single crystalline silicon substrates were first partially porosified by electrochemical anodization. Application of suitable treatments of porous silicon layer has required the use of several characterization methods to identify intrinsic porous silicon properties after anodization and to verify their evolution as function of different applied treatments. Chemical, structural and mechanical properties of porous silicon layers were studied by using different characterization techniques (XPS-SIMS, AFM-MEB-XRD, nanoindentation, razor blade insertion, etc.). Such studies allowed comprehending and describing physical mechanisms occurring during each applied technological steps and well determining appropriated {porosity, thickness} parameters of porous silicon layer with the developed technological process flow. The Smart Cut™ technology was successfully applied to partially porosified silicon substrates leading to the fabrication of temporary SOI-like structures with a weak embedded porous Si layer. Such structures were then “dismantled” thanks to a second polymer or direct bonding and razor blade insertion to produce a mechanical rupture through the fragile embedded porous silicon layer and to get the second thin silicon film transfer. Each fabricated structure was characterized step by step to check its integrity and its chemical and mechanical stabilities. Crystalline properties of the double transferred silicon layer were verified demonstrating the compatibility of such structures with microelectronic applications such as “Back-Side Imagers” needing double-sided layer processing. Eventually, a promising and efficient technology has been developed to allow the double transfer of thin single crystalline silicon layer which presents a high potential for various applications such as visible imagers or photovoltaic systems
Campillo, Javier, i Stephen Foster. "Global Solar Photovoltaic Industry Analysis with Focus on the Chinese Market". Thesis, Mälardalen University, Mälardalen University, Mälardalen University, Department of Public Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-4489.
Pełny tekst źródłaHepburn, A. R. "Charge trapping instabilities in amorphous silicon/silicon nitride thin film transistors". Thesis, Open University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381605.
Pełny tekst źródłaNominanda, Helinda. "Amorphous silicon thin film transistor as nonvolatile device". Texas A&M University, 2008. http://hdl.handle.net/1969.1/86004.
Pełny tekst źródłaMalape, Maibi Aaron. "Low temperature growth of Amorphous Silicon thin film". Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7768_1254727160.
Pełny tekst źródłaThe growth of amorphous hydrogenated silicon (a-Si:H) thin films deposided by hot wire chemical vapor deposition (HWCVD) has been studied. The films have been characterised for optical and structural properties by means of UV/VIS,FITR,ERDA, XRD.XTEM and Raman spectroscopy. Low subtrate heater temperatures in the range form 130 to 200 degrees celcius were used in this thesis because it is believed to allow for the deposition of device quality a-Si:H which can be used for electronic photovoltaic devices. Furthermore, low temperatures allows the deposition of a-Si:H on any subtrate and thus offers the possibility of making large area devices on flexible organic substances. We showed that the optical and structural properties of grown a-Si:H films depended critically upon whether the films were produced with silane gas or silane diluted with hydrogen gas. We also showed that it is possible to to deposit crystalline materials at low temperature under high hydrogen dilution ratio of silane gas.
Song, Yang Photovoltaics & Renewable Energy Engineering Faculty of Engineering UNSW. "Dielectric thin film applications for silicon solar cells". Publisher:University of New South Wales. Photovoltaics & Renewable Energy Engineering, 2009. http://handle.unsw.edu.au/1959.4/44486.
Pełny tekst źródłaOlding, Timothy Russell. "A thin film piezoelectric transformer for silicon integration". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0005/MQ42673.pdf.
Pełny tekst źródłaMilne, Stuart Brian. "Thin-film silicon based MEMS actuators and materials". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609898.
Pełny tekst źródłaSchuster, Christian. "Diffractive optics for thin-film silicon solar cells". Thesis, University of York, 2015. http://etheses.whiterose.ac.uk/9083/.
Pełny tekst źródłaMcCann, Michelle Jane, i michelle mccann@uni-konstanz de. "Aspects of Silicon Solar Cells: Thin-Film Cells and LPCVD Silicon Nitride". The Australian National University. Faculty of Engineering and Information Technology, 2002. http://thesis.anu.edu.au./public/adt-ANU20040903.100315.
Pełny tekst źródłaWang, Yushu. "Thin-film trench capacitors for silicon and organic packages". Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42741.
Pełny tekst źródłaThesis advisor has approved the addition of errata to this item. The abstract text in the metadata record has been modified to match the document text.
Morgan, Peter Neil. "Metastable phenomena in hydrogenated amorphous silicon thin film transistors". Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387749.
Pełny tekst źródłaYang, Su-Hsien, i 楊舒顯. "Low-Temperature Amorphous Silicon Thin Film Process Technology Research". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/31119049405469563201.
Pełny tekst źródła南榮技術學院
工程科技研究所碩士班
99
The output value of flat-panel displays various end-use applications with the strong demand continues to grow, while the thin film transistor (TFT) liquid crystal display (LCD) technology has become a major disposal, among which the growth of thin LCD TV applications, the most prominent. At present the panel makers are committed to integrate various technologies to develop high-quality, low-power thin LCD television, with an eye on the development of other new applications. This thesis is based on chemical vapor deposition (CVD) in the TFT-LCD manufacturing process to the existing process temperature of 300 degrees, will be made available lower the temperature to 200 degrees, and the choice of the glass substrate can be used alkali metals sodium or calcium ions of the glass to produce TFT-LCD panels, LCD panels help reduce production costs on the other hand, lower temperatures also contribute to the process of development towards flexible displays and glass cost reduction.
Chang, Ta-Shan, i 張大山. "Investigation on Technology of Amorphous Silicon Thin-Film Transistor". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/26476978410006939144.
Pełny tekst źródła國立清華大學
電子工程研究所
95
A low-dielectric-constant (low-k) material, siloxane-based hydrogen silsesquioxane (HSQ), is investigated as a passivation layer in bottom-gate hydrogenated amorphous silicon thin film transistors (a-Si:H TFTs). The low-k HSQ film passivated on TFT promotes the brightness and aperture ratio of TFT-LCD due to its high light transmittance and good planarization. Also, the performance of a-Si:H TFT with HSQ passivation has been improved, compared to a conventional silicon nitride (SiNx) passivated TFT, due to that the hydrogen bonds of HSQ assist the hydrogen incorporation to eliminate the density of states between back channel and passivation layer. Experimental results exhibit an improved field-effect mobility of 0.57 cm2/Vs and subthreshold swing of 0.68 V. Next, a novel spin-on low-k material, photosensitive Polymethylsilazane (PS-MSZ), directly patterned by i-line stepper has been investigated for BCE a-Si TFT passivation layer. The presence of PS-MSZ with good transmittance and planarization reduces the RC delay between gate and data-line, and promotes the aperture ratio of TFT-LCD panel. The direct patterning technique simplifies the process, decreasing cost without the vacuum system and etching steps. The TFT transfer characteristics are not significantly impacted by the PS-MSZ passivation layer. In addition, the PS-MSZ passivated TFT has low leakage current in reverse subthreshold region due to its spin-on deposition. On the other hand, another new direct pattern low-k material, polymer, will also be proposed to be a passivation layer and to compare with PS-MSZ film, which can also applied on TFT device. On study the back channel effect, the mechanism of back channel leakage between a-Si:H film and passivation layer has been demonstrated. There are two factors affected back channel leakage very much. These factors are fixed charge and interface states. These factors will impact TFT reverse subthreshold characteristics (operation bias at small negative gate voltage) and lead to back channel effect. Fixed charges bend the band and accumulate electrons at back channel. We use forward and reverse sweep measurement at different temperature to confirm back channel leakage mechanism. When TFT device is operated at Vg= 20 ~ -20V, there is a different phenomenon which let threshold voltage increased and back channel leakage decreased. There are lots of electrons trapping in amorphous silicon film when the initial operating voltage is a large positive bias. These trapping electrons will block other electrons entering amorphous silicon film, including back channel region. These trapping electrons in amorphous silicon film made an additional barrier which blocked electron transition, especially at small gate bias operation. This kind of conduction mechanism is similar to space-charge-limited current conduction (SCLC). These trapping electrons in amorphous silicon film are temporary. Therefore, these trapping electrons will be excited at a high temperature environment. Once trapping electrons excited, the blocking barrier decreases and the device conduction mechanism is back to initial type. Therefore, for TFT transfer characteristics, fixed charges existing passivation layer and interface states is the main reason which result in back channel leakage. The dual-gate a-Si:H TFT owns superior conducting ability than conventional TFT which contains an additional electron path at back channel. Positive back gate bias leads to an increasing in drain current. The dual-gate a-Si:H TFT also exhibits the better endurance against photo leakage current than conventional a-Si:H TFT. When dual gate driving bias becomes negative, conduction band and valence band are bending up by dual gate which lead the photo excited electron-hole pairs to be confined. The confined electron-hole pairs may be easily recombined by lots of DOS in a-Si:H film. Otherwise, under negative dual gate bias, Fermi level is near valence band. At this time, photo excited electron-hole pairs would probably be recombined immediately by those lots of traps when they generated.
Lai, Tz-Chiang, i 賴自強. "Development of Ultra-Low-Temperature Polycrystalline Silicon Thin Film Deposition technology". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/91500151403653087461.
Pełny tekst źródła國立臺灣科技大學
電子工程系
95
In order to realize the purpose of plastic substrate thin film transistor , We have successfully deposited semitransparent film that the main composition of the film is silicon nitride by using reactive sputtered method. And, it has light absorption (absorption coefficient from 0 to 56000 cm-1) that can be applied as heat retaining layer to get Low Temperature poly-Si on plastic substrates after excimer laser annealing. By adjusting the flow rate of Ar and N2, we can control the absorption coefficient of the semitransparent film at will.After get the optimum condition of the semitransparent and using this film as heat retaining layer for the 90nm thick silicon, we use excimer laser and have successfully obtained poly-Si on plastic substrates. It’s grain size can reache to 5um.
Chen, Wei-Jyun, i 陳維俊. "Low Temperature Poly-Silicon Thin Film Transistors Fabricated by Energy-Assisted Agent Crystallization Technology and Effects of Hydrogenation on Poly-Silicon Thin Film Transistors". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/33630649368593303227.
Pełny tekst źródła大同大學
光電工程研究所
97
This thesis will discuss two different chapters. First, fabrication of low temperature poly-silicon TFTs by using oxide and n+ a-Si by PECVD and the poly-Si and n+ poly-si are obtained by the EAA technique that we develop before. We will discuss the effect of off-state leakage on the different thickness of n+ poly-Si.
Lee, Guan-Hsing, i 李冠興. "Optoelectronic Devices on Silicon Substrates Using Thin Film Flip-Chip Bonding Technology". Thesis, 2000. http://ndltd.ncl.edu.tw/handle/89261084788877506048.
Pełny tekst źródła國立清華大學
電子工程研究所
88
Thin film Au(80)Sn(20) solder layer ( about 0.8um~2um of thickness ) was utilized for flip-chip bonding. For different optoelectronic devices, we tried several bonding parameters — reflow temperature, reflow arm z-position, solder thickness on chip or substrate or both — to get the optimized condition. From the results of shear force tests, we believed that thin film solder layer could provide acceptable shear strength. The flip-chip bonded 1.55um laser diode showed excellent L-I(CW) and I-V characteristics compared to pre-bonded bare chip. To verify its thermal stability, it was tested by thermal shock test. After 500 thermal cycles, the characteristics of bonded chips show no noticeable degradation. So it is believed that using thin film solder layer could obtain both acceptable mechanical strength and good thermal stability. We also tested the flip-chip bonded PIN photodiode utilizing its p-type diffusion window as bonding interface. Under higher reflow temperature ( 310℃), it showed lower contact resistance because of sufficient interdiffusion between Au and AuSn, but the dark current became larger due to the induced stress during reflow. Under lower reflow temperature (290℃), the dark current was close to that of pre-bonded bare chip, while the contact resistance became larger. In summary, the thin film flip-chip bonding technique showed good feasibility for integration of optoelectronic devices and silicon substrates.
Shen, Sheng-Hui, i 沈聖惠. "Laser Annealing Technology For Electrical Characteristic Of Low Temperature Poly-Silicon Thin Film". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/51985687217116373840.
Pełny tekst źródła國立暨南國際大學
光電科技碩士學位學程在職專班
100
Low Temperature Poly-Silicon is the silicon based material. It’s composed by many silicon crystalline grains size around 0.3 to several million um. High Temperature Solid Phase Crystallization (HSPC) that required annealing temperature higher than 900°C is the traditional way of making semi-conductive HSPC is not suitable for making liquid crystal display (LCD), since glass will deformation at 650°C, which is much lower than required temperature for HSPC. Therefore, the Low Temperature Poly-Silicon membrane was developed for the manufacture of the LCD. Our study is focus on the most widely used technique called Excimer Laser Annealing. We used 308 nm Excimer laser to scan the Amorphous silicon. The Amorphous silicon then becomes polycrystalline silicon or non-crystalline silicon membrane. To help the non-crystalline silicon absorb laser energy, two layers of SiOX&SiNx were placed underneath the amorphous silicon. This layer can also help prevent the laser penetration and serve as the protection for the glass surface. In this study , we first exam how Excimer laser scan effects the Low Temperature Poly-Silicon crystal size by analysis laser frequency, coverage, and energy density. The optima carrier Mobility and Voltage ,an electric current was also measured and determined by Test Element Group The experiments show than, during the incomplete saturation phase , the grain size is depend on the amount of the energy that Amorphous-Silicon Thin Film absorbed. However ,the grain size become smaller due to the over during the saturated phase. This phoneme becomes very obvious as the laser energy increases. The carrier Mobility is in directly proportional to the grain size during incomplete saturation phase. However, the carrier Mobility decreases when grain size decreases. Although we can reach the best carrier Mobility during saturated phase, the overall variation also increase dramatically. Therefore, it’s not suitable for the mass production. In conclusion, the best laser wavelength is one energy level lower than the saturated phase energy level.
Cheng-YiKo i 柯正一. "Decision on Adoption of Technology for Amorphous Silicon Thin Film Photovoltaic Solar Manufacturers". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/82529796670072293310.
Pełny tekst źródła國立成功大學
工業與資訊管理學系專班
100
Corporates often spend their capital expenditures in developing new technologies and new products when facing the increasingly competitive market, by which product value can be increased or production cost can be reduced to enhance the competitive advantages. Therefore, the decision about the use of capital expenditure obtains more attention. However such a decision may encounter various kinds of risks and the decision maker must evaluate and measure the feasibility whether bring corporation the positive effect. To the amorphous silicon thin film solar manufacturers, existing product has worse competitiveness in the market. It need do the structured analysis of decision candidates before taking the capital expenditure action to develop new technologies and products. By using the Bayesian decision analysis, executing the prior analysis and posterior analysis with product acceptance rate and product return rate two uncertain factors to come out the decision model and decision rules. And then apply the real data in this model to calculate and analysis to verify the feasibility of this model. The purpose of the research is to assist the amorphous silicon thin film solar manufacturers in making decision by providing a systematic analytic decision procedure to prevent the input of unnecessary resource and reduce the possibility of expectation gap.
Dongre, Suryansh. "Crystalline Silicon Carbide Thin Films for Ultraviolet Detection". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4771.
Pełny tekst źródłaChaurasia, Saloni. "Heterogeneous Integration of Thin-film Germanium on Silicon and Steel". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4895.
Pełny tekst źródłaYang, Meng-Chuan, i 楊孟娟. "Amorphous Silicon Thin Film Transistors Based Gate Driver on Array Technology for LCD Panels". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/35562408491302866146.
Pełny tekst źródła國立交通大學
光電工程學系
100
In the driver system of thin-film transistor liquid-crystal display (TFT-LCD), gate drivers (or scan drivers) are the essential parts that sequentially control the gates of pixel TFTs. Therefore, the pixel TFTs can transfer correct data and store in the liquid crystal and storage capacitors. Recently, in the consumer electronic display products, the gate driver circuits have been integrated into the bottom plate glass of LCD module rather than providing form the conventional ICs. Although the electron mobility in a-Si TFTs is extremely low (≈0.3cm2/V-s), the traits of high uniformity and low cost of manufacturing a-Si TFTs have created the trend towards gate driver on array (GOA). Moreover, the application of GOA decreases the cost of ICs and results in the module lighter and thinner. In this thesis, we have proposed two main kinds of GOA, Type A and Type C. The features of Type A are the low noise and stable waveforms, and the threshold voltage drop cancellation method. On the other hand, Type C circuit is designed for the low power application and applying on the narrow bezel panel. Furthermore, in order to apply on products flexibly, Type B and Type D circuits are revised for the bi-directional function from Type A and Type C circuits, respectively. Finally, all of these circuits must integrate into panels for real assessments. Therefore, these circuits should be adjusted for the real panel specification and commercial IC timings. In addition, the device characteristics have to be well surveyed form several experiments including the uniformity, stability, and reliability. By stress experiments for devices and circuits, the results show the gate driver circuits still work normally after long-term use.
Hsiao, Tzu-Hsuan, i 蕭子軒. "The application of disilane-plasma deposition technology in silicon-based thin-film solar cells". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/86011432770879788436.
Pełny tekst źródła國立交通大學
光電工程學系
101
In this article, we investigate the performance of hydrogenated amorphous silicon-based thin-film fabricated by high-density plasma chemical vapor deposition system. The solar spectra in near infrared regime (<750 nm) can not be effective absorbed due to the high optical band gap of a-Si:H thin film (1.8 ~1.9 eV). In order to utilize the solar spectra in near infrared regime effectively, we develop the hydrogenated amorphous silicon-germanium alloys (a-SiGe:H) films with low optical band gap (1.4 to 1.6 eV). The single junction a-SiGe:H thin film solar cells with the band gap of 1.45 eV can be obtained by the optimization of Ge doping and deposition parameter. We demonstrate single-junction a-SiGe solar cells with the conversion efficiency of 5.26% and the broadband quantum efficiency in the range of 300-850 nm. We introduce a-SiGe thin film as the absorber layer of bottom sub-cell in stacked solar cells. As achieving current matching between the top sub-cell and bottom sub-cell in the a-Si/a-SiGe double junction solar cells, conversion efficiency can be reached up to 8.38%. Moreover, highly light-soaking stable a-Si/a-Si/a-SiGe triple junction solar cells were demonstrated with photo-induced degradation in conversion-efficiency as low as 2.5%. We also show the solar cells fabricated by different gas source and different substrate. By using disilane-plasma technology, the conversion efficiency of single-junction a-Si and a-SiGe solar cells achieves 9.01% and 4.76%. For n-i-p structure a-Si solar cells integrated into the back reflective substrate show the conversion efficiency of 8.47% through the optimized thickness of doped layers. In the future, our research will focus on tuning the optical and electrical performance of a-SiGe:H thin film fabricated by using disilane-plasma technology to obtain the double-junction and triple-junction thin film solar cells with high conversion efficiency.
Su, Ya-hui, i 蘇雅惠. "An Angstrom-Scale Surface Smooth Technology for Transferred Single-Crystal Silicon Thin Film Layers". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/91646643847953386170.
Pełny tekst źródła國立中央大學
機械工程研究所
95
The technique of single-crystal Si layer transfer based on using Hydrogen ion implantation has been widely applied in the fabrication of SOI materials possessing nano-scale device layer with single-crystal quality. However, after Si layer transfer process, a lattice-defect region was formed near the surface of transferred Si layer. Therefore, this unwanted region usually needs an extra chemical mechanical polishing (CMP) process to remove it. The main purpose of this study is to avoid the above polishing process as well as simplify the manufacturing processes. In this study, the removal of lattice-defect region generated after layer transfer by Smart-cut® method used etching approach with specific etchants to etch out it at specific temperature. This etching process could also result in surface smooth of the Si transferred layer. Besides, depositing a polysilicon layer as a sacrificial layer has successfully improved the occurrence of channel effect during ion implantation process and then reduced the difference of ion penetration depth to initially modify the surface roughness of the as-split SOI thin film. The surface roughness could be further decreased after using etching approach to remove the lattice-defect region. The above two steps can make the final surface of the transferred single-crystal Si layer smooth and uniform.
Liang, Shin-wei, i 梁辛瑋. "Optimization of Microcrystalline Silicon Thin Film Solar Cell Isolation Processing Parameters by using Laser Technology". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/45014897567083821128.
Pełny tekst źródła國立臺灣科技大學
自動化及控制研究所
97
The microcrystalline silicon thin film solar cell consists of several thin films, such as the microcrystalline silicon thin film, the aluminum-doped zinc oxide transparent conductive film, and aluminum back-contact thin films. The purpose of this research is to find the optimization parameters of making the several thin films isolated well by laser scribing. In this study, we used three laser systems, Ultraviolet Laser, Fibre Laser, and Femtosecond Laser, to examine the relation between factors of laser systems and the quality characteristics of laser isolation processing. By using Taguchi Method, we could obtain factors and quality characteristics from following the L18 orthogonal array to set up the experiment. We defined the quality characteristics of scribing structure, such as upper width of V-cut line, lower width of V-cut line, V-cut depth, and the burrs above processing surface of microcrystalline silicon thin film. Therefore, the optimal factors combination for isolation processing of the microcrystalline silicon thin film were conducted via Taguchi Method and analytic hierarchy process theory. The results of laser scribing microcrystalline solar cell materials are as follows: AZO(200nm) scribed a minimum line width of 16.07 micrometers, AZO(500nm) scribed a minimum line width of 17.66 micrometers, microcrystalline silicon(38% crystallinity) scribed the smallest line 24.29 micrometers wide, microcrystalline silicon(68% crystallinity) scribed a minimum line width of 29.91 micrometers, and aluminum back contact(300nm) scribed the smallest line 11.57 micrometers wide. In additions, we can predict the results of laser isolation processing through simulation experiments by using the back propagation neural computing forecasting system. Through experimenting and computing, the error between actual value and predicted value could be converged within 2%. Finally, the results of laser isolation processing experiment were confirmed.