Gotowa bibliografia na temat „Silicon Tandem Cells”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Silicon Tandem Cells”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Silicon Tandem Cells"

1

Tian, Xueyu, Samuel D. Stranks i Fengqi You. "Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells". Science Advances 6, nr 31 (lipiec 2020): eabb0055. http://dx.doi.org/10.1126/sciadv.abb0055.

Pełny tekst źródła
Streszczenie:
A promising route to widespread deployment of photovoltaics is to harness inexpensive, highly-efficient tandems. We perform holistic life cycle assessments on the energy payback time, carbon footprint, and environmental impact scores for perovskite-silicon and perovskite-perovskite tandems benchmarked against state-of-the-art commercial silicon cells. The scalability of processing steps and materials in the manufacture and operation of tandems is considered. The resulting energy payback time and greenhouse gas emission factor of the all-perovskite tandem configuration are 0.35 years and 10.7 g CO2-eq/kWh, respectively, compared to 1.52 years and 24.6 g CO2-eq/kWh for the silicon benchmark. Prolonging the lifetime provides a strong technological lever for reducing the carbon footprint such that the perovskite-silicon tandem can outcompete the current benchmark on energy and environmental performance. Perovskite-perovskite tandems with flexible and lightweight form factors further improve the energy and environmental performance by around 6% and thus enhance the potential for large-scale, sustainable deployment.
Style APA, Harvard, Vancouver, ISO itp.
2

Shukla, Naman, Anil Kumar Verma i Sanjay Tiwari. "Optimization of Efficient Perovskite-Si Hybrid Tandem Solar Cells". Material Science Research India 20, nr 1 (31.05.2023): 25–40. http://dx.doi.org/10.13005/msri/200104.

Pełny tekst źródła
Streszczenie:
Perovskite-silicon tandem solar cells have attracted much attention to photovoltaic community because of their high efficiency via easy fabrication methods and availability of precursor material abundant in nature. The properties of both perovskite and silicon meet ideal solar cell standards such as high light absorption potential, long carrier diffusion length and fast charge separation process. Semi-transparent solar cell with widely tunable band gap of perovskite material is compatible with silicon solar cell for tandem structures. A perovskite-silicon tandem solar cell four terminal configuration optimization was performed through numerical simulation. The optimized four terminal perovskite-silicon tandem solar cell performances was investigated by varying the thickness of top and bottom solar cell absorber layers, defect density of the absorber layer, and temperature. Perovskite-silicon tandem solar cell showed better photovoltaic performance under constant illumination condition. A high performance mechanically attached four terminal (4-T) perovskite-silicon tandem solar cell has total power conversion efficiency (PCE) of 34.88% by optimized parameters through simulation. It has shown 37% efficiency with matched current of 23.71mA/cm2. These numerical simulation results are provided the parameter values for further experimental assignment.
Style APA, Harvard, Vancouver, ISO itp.
3

Ulbrich, C., C. Zahren, A. Gerber, B. Blank, T. Merdzhanova, A. Gordijn i U. Rau. "Matching of Silicon Thin-Film Tandem Solar Cells for Maximum Power Output". International Journal of Photoenergy 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/314097.

Pełny tekst źródła
Streszczenie:
We present a meaningful characterization method for tandem solar cells. The experimental method allows for optimizing the output power instead of the current. Furthermore, it enables the extraction of the approximate AM1.5g efficiency when working with noncalibrated spectra. Current matching of tandem solar cells under short-circuit condition maximizes the output current but is disadvantageous for the overall fill factor and as a consequence does not imply an optimization of the output power of the device. We apply the matching condition to the maximum power output; that is, a stack of solar cells is power matched if the power output of each subcell is maximal at equal subcell currents. The new measurement procedure uses additional light-emitting diodes as bias light in theJVcharacterization of tandem solar cells. Using a characterized reference tandem solar cell, such as a hydrogenated amorphous/microcrystalline silicon tandem, it is possible to extract the AM1.5g efficiency from tandems of the same technology also under noncalibrated spectra.
Style APA, Harvard, Vancouver, ISO itp.
4

Weiss, Dirk N. "Tandem solar cells beyond perovskite-silicon". Joule 5, nr 9 (wrzesień 2021): 2247–50. http://dx.doi.org/10.1016/j.joule.2021.08.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Singh, Manvika, Rudi Santbergen, Indra Syifai, Arthur Weeber, Miro Zeman i Olindo Isabella. "Comparing optical performance of a wide range of perovskite/silicon tandem architectures under real-world conditions". Nanophotonics 10, nr 8 (1.06.2020): 2043–57. http://dx.doi.org/10.1515/nanoph-2020-0643.

Pełny tekst źródła
Streszczenie:
Abstract Since single junction c-Si solar cells are reaching their practical efficiency limit. Perovskite/c-Si tandem solar cells hold the promise of achieving greater than 30% efficiencies. In this regard, optical simulations can deliver guidelines for reducing the parasitic absorption losses and increasing the photocurrent density of the tandem solar cells. In this work, an optical study of 2, 3 and 4 terminal perovskite/c-Si tandem solar cells with c-Si solar bottom cells passivated by high thermal-budget poly-Si, poly-SiOx and poly-SiCx is performed to evaluate their optical performance with respect to the conventional tandem solar cells employing silicon heterojunction bottom cells. The parasitic absorption in these carrier selective passivating contacts has been quantified. It is shown that they enable greater than 20 mA/cm2 matched implied photocurrent density in un-encapsulated 2T tandem architecture along with being compatible with high temperature production processes. For studying the performance of such tandem devices in real-world irradiance conditions and for different locations of the world, the effect of solar spectrum and angle of incidence on their optical performance is studied. Passing from mono-facial to bi-facial tandem solar cells, the photocurrent density in the bottom cell can be increased, requiring again optical optimization. Here, we analyse the effect of albedo, perovskite thickness and band gap as well as geographical location on the optical performance of these bi-facial perovskite/c-Si tandem solar cells. Our optical study shows that bi-facial 2T tandems, that also convert light incident from the rear, require radically thicker perovskite layers to match the additional current from the c-Si bottom cell. For typical perovskite bandgap and albedo values, even doubling the perovskite thickness is not sufficient. In this respect, lower bandgap perovskites are very interesting for application not only in bi-facial 2T tandems but also in related 3T and 4T tandems.
Style APA, Harvard, Vancouver, ISO itp.
6

Hou, Yi, Erkan Aydin, Michele De Bastiani, Chuanxiao Xiao, Furkan H. Isikgor, Ding-Jiang Xue, Bin Chen i in. "Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon". Science 367, nr 6482 (5.03.2020): 1135–40. http://dx.doi.org/10.1126/science.aaz3691.

Pełny tekst źródła
Streszczenie:
Stacking solar cells with decreasing band gaps to form tandems presents the possibility of overcoming the single-junction Shockley-Queisser limit in photovoltaics. The rapid development of solution-processed perovskites has brought perovskite single-junction efficiencies >20%. However, this process has yet to enable monolithic integration with industry-relevant textured crystalline silicon solar cells. We report tandems that combine solution-processed micrometer-thick perovskite top cells with fully textured silicon heterojunction bottom cells. To overcome the charge-collection challenges in micrometer-thick perovskites, we enhanced threefold the depletion width at the bases of silicon pyramids. Moreover, by anchoring a self-limiting passivant (1-butanethiol) on the perovskite surfaces, we enhanced the diffusion length and further suppressed phase segregation. These combined enhancements enabled an independently certified power conversion efficiency of 25.7% for perovskite-silicon tandem solar cells. These devices exhibited negligible performance loss after a 400-hour thermal stability test at 85°C and also after 400 hours under maximum power point tracking at 40°C.
Style APA, Harvard, Vancouver, ISO itp.
7

Jäger, Klaus, Johannes Sutter, Martin Hammerschmidt, Philipp-Immanuel Schneider i Christiane Becker. "Prospects of light management in perovskite/silicon tandem solar cells". Nanophotonics 10, nr 8 (1.06.2020): 1991–2000. http://dx.doi.org/10.1515/nanoph-2020-0674.

Pełny tekst źródła
Streszczenie:
Abstract Perovskite/silicon tandem solar cells are regarded as a promising candidate to surpass current efficiency limits in terrestrial photovoltaics. Tandem solar cell efficiencies meanwhile reach more than 29%. However, present high-end perovskite/silicon tandem solar cells still suffer from optical losses. We review recent numerical and experimental perovskite/silicon tandem solar cell studies and analyse the applied measures for light management. Literature indicates that highest experimental efficiencies are obtained using fully planar perovskite top cells, being in contradiction to the outcome of optical simulations calling for textured interfaces. The reason is that the preferred perovskite top cell solution-processing is often incompatible with usual micropyramidal textures of silicon bottom cells. Based on the literature survey, we propose a certain gentle nanotexture as an example to reduce optical losses in perovskite/silicon tandem solar cells. Optical simulations using the finite-element method reveal that an intermediate texture between top and bottom cell does not yield an optical benefit when compared with optimized planar designs. A double-side textured top-cell design is found to be necessary to reduce reflectance losses by the current density equivalent of 1 mA/cm2. The presented results illustrate a way to push perovskite/silicon tandem solar cell efficiencies beyond 30% by improved light management.
Style APA, Harvard, Vancouver, ISO itp.
8

Giliberti, Gemma, Francesco Di Giacomo i Federica Cappelluti. "Three Terminal Perovskite/Silicon Solar Cell with Bipolar Transistor Architecture". Energies 15, nr 21 (1.11.2022): 8146. http://dx.doi.org/10.3390/en15218146.

Pełny tekst źródła
Streszczenie:
Solar photovoltaic energy is the most prominent candidate to speed up the transition from the existing non-renewable energy system to a more efficient and environmentally friendly one. Currently, silicon cells dominate the photovoltaic market owing to their cost-effectiveness and high efficiency, nowadays approaching the theoretical limit. Higher efficiency can be achieved by tandem devices, where a wide bandgap semiconductor is stacked on top of the silicon cell. Thin-film perovskite technology has emerged as one of the most promising for the development of silicon-based tandems because of the optimal perovskite opto-electronic properties and the fast progress achieved in the last decade. While most of the reported perovskite/silicon tandem devices exploit a two-terminal series connected structure, three-terminal solutions have recently drawn significant attention due to their potential for higher energy yield. In this work, we report for the first time a theoretical study, based on validated optical and electrical simulations, of three-terminal perovskite/silicon solar cells employing a hetero-junction bipolar transistor structure. With respect to other three-terminal tandems proposed so far, the transistor structure can be implemented with rear-contact silicon cells, which are simpler and more common than interdigitated back-contact ones.
Style APA, Harvard, Vancouver, ISO itp.
9

Song, Hoyoung, Changhyun Lee, Jiyeon Hyun, Sang-Won Lee, Dongjin Choi, Dowon Pyun, Jiyeon Nam i in. "Monolithic Perovskite-Carrier Selective Contact Silicon Tandem Solar Cells Using Molybdenum Oxide as a Hole Selective Layer". Energies 14, nr 11 (26.05.2021): 3108. http://dx.doi.org/10.3390/en14113108.

Pełny tekst źródła
Streszczenie:
Monolithic perovskite–silicon tandem solar cells with MoOx hole selective contact silicon bottom solar cells show a power conversion efficiency of 8%. A thin 15 nm-thick MoOx contact to n-type Si was used instead of a standard p+ emitter to collect holes and the SiOx/n+ poly-Si structure was deposited on the other side of the device for direct tunneling of electrons and this silicon bottom cell structure shows ~15% of power conversion efficiency. With this bottom carrier selective silicon cell, tin oxide, and subsequent perovskite structure were deposited to fabricate monolithic tandem solar cells. Monolithic tandem structure without ITO interlayer was also compared to confirm the role of MoOx in tandem cells and this tandem structure shows the power conversion efficiency of 3.3%. This research has confirmed that the MoOx layer simultaneously acts as a passivation layer and a hole collecting layer in this tandem structure.
Style APA, Harvard, Vancouver, ISO itp.
10

Qian, Jiadong, Marco Ernst, Nandi Wu i Andrew Blakers. "Impact of perovskite solar cell degradation on the lifetime energy yield and economic viability of perovskite/silicon tandem modules". Sustainable Energy & Fuels 3, nr 6 (2019): 1439–47. http://dx.doi.org/10.1039/c9se00143c.

Pełny tekst źródła
Streszczenie:
Perovskite/silicon two-junction tandem solar cells have achieved higher power conversion efficiency than silicon cells. However, the long-term performance of tandem modules strongly depends on the degradation of perovskite top cells.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Silicon Tandem Cells"

1

Bett, Alexander Jürgen [Verfasser], i Stefan [Akademischer Betreuer] Glunz. "Perovskite silicon tandem solar cells : : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells". Freiburg : Universität, 2020. http://d-nb.info/1214179703/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mirabelli, Alessandro James. "Highly efficient monolithic Perovskite/Silicon bifacial tandem solar cells". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20369/.

Pełny tekst źródła
Streszczenie:
Perovskite solar cells have been the focus of photovoltaics research in this past decade. Owing to their many favorable properties - like low cost solution processability, tunable bandgap and high efficiency, they have seen much attention in various types of solar cell designs. A promising technology has coupled perovskite cells with another semiconductor material in monolithic tandem solar cells, reaching record efficiencies of 29.15%. However, these kinds of devices require current matching condition to maximize the output of solar cells, making their fabrication challenging. Here, we propose the innovative bifacial tandem configuration to overcome current matching limits between the two sub-cells, by collecting photons from the surrounding environment, i.e. albedo. The extra light shining on our silicon bottom cell boosts the photogenerated current above monolithic tandem values. We show that the current density gain is more pronounced in perovskite solar cells with a narrow bandgap, 1.59 eV, than those with a wider one 1.7 eV. In other words, current matched tandems show little to no increase in efficiency with the extra albedo, while mismatched cells exhibit the most power, reaching up to ~28% in the best scenario. To give more credit to our work, we report outdoor data gathered in various locations around the world, and we show how different albedos have distinct effects on bifacial tandems.
Style APA, Harvard, Vancouver, ISO itp.
3

Redorici, Lisa. "Efficiency limits for silicon/perovskite tandem solar cells: a theoretical model". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9531/.

Pełny tekst źródła
Streszczenie:
The primary goal of this work is related to the extension of an analytic electro-optical model. It will be used to describe single-junction crystalline silicon solar cells and a silicon/perovskite tandem solar cell in the presence of light-trapping in order to calculate efficiency limits for such a device. In particular, our tandem system is composed by crystalline silicon and a perovskite structure material: metilammoniumleadtriiodide (MALI). Perovskite are among the most convenient materials for photovoltaics thanks to their reduced cost and increasing efficiencies. Solar cell efficiencies of devices using these materials increased from 3.8% in 2009 to a certified 20.1% in 2014 making this the fastest-advancing solar technology to date. Moreover, texturization increases the amount of light which can be absorbed through an active layer. Using Green’s formalism it is possible to calculate the photogeneration rate of a single-layer structure with Lambertian light trapping analytically. In this work we go further: we study the optical coupling between the two cells in our tandem system in order to calculate the photogeneration rate of the whole structure. We also model the electronic part of such a device by considering the perovskite top cell as an ideal diode and solving the drift-diffusion equation with appropriate boundary conditions for the silicon bottom cell. We have a four terminal structure, so our tandem system is totally unconstrained. Then we calculate the efficiency limits of our tandem including several recombination mechanisms such as Auger, SRH and surface recombination. We focus also on the dependence of the results on the band gap of the perovskite and we calculare an optimal band gap to optimize the tandem efficiency. The whole work has been continuously supported by a numerical validation of out analytic model against Silvaco ATLAS which solves drift-diffusion equations using a finite elements method. Our goal is to develop a simpler and cheaper, but accurate model to study such devices.
Style APA, Harvard, Vancouver, ISO itp.
4

Gugole, Marika. "Development and characterisation of silicon solar cells with recombination interconnects for future tandem solar cells". Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355765.

Pełny tekst źródła
Streszczenie:
In this project commercial BSF Si solar cells have been processed in order to develop a suitable interconnect for a possible tandem solar cell. The Ag original top contacts have been removed and replaced with TiSi2 formed using the SALICIDE process at 3 different temperatures: 500 °C, 650 °C and 750 °C. Raman spectroscopy and EDS maps have been used to prove the successful formation of the TiSi2 contacts for the 750 °C temperature. As part of this work we also developed a MATLAB script which successfully fits the measured IV curve of a Si solar cell and extrapolates the values of the components of the equivalent circuit. The script also identifies and quantifies the energy losses percentage for different loss mechanisms. The script was used to characterize commercial BSF Si solar cells and to simulate their behavior in a tandem configuration by IV measurements under filtered light. The results of this characterization was used to predict the requirements of a possible top solar cell for a tandem configuration.
Style APA, Harvard, Vancouver, ISO itp.
5

Davidson, Lauren Michel. "Strategies for high efficiency silicon solar cells". Thesis, University of Iowa, 2017. https://ir.uiowa.edu/etd/5452.

Pełny tekst źródła
Streszczenie:
The fabrication of low cost, high efficiency solar cells is imperative in competing with existing energy technologies. Many research groups have explored using III-V materials and thin-film technologies to create high efficiency cells; however, the materials and manufacturing processes are very costly as compared to monocrystalline silicon (Si) solar cells. Since commercial Si solar cells typically have efficiencies in the range of 17-19%, techniques such as surface texturing, depositing a surface-passivating film, and creating multi-junction Si cells are used to improve the efficiency without significantly increasing the manufacturing costs. This research focused on two of these techniques: (1) a tandem junction solar cell comprised of a thin-film perovskite top cell and a wafer-based Si bottom cell, and (2) Si solar cells with single- and double-layer silicon nitride (SiNx) anti-reflection coatings (ARC). The perovskite/Si tandem junction cell was modeled using a Matlab analytical program. The model took in material properties such as doping concentrations, diffusion coefficients, and band gap energy and calculated the photocurrents, voltages, and efficiencies of the cells individually and in the tandem configuration. A planar Si bottom cell, a cell with a SiNx coating, or a nanostructured black silicon (bSi) cell can be modeled in either an n-terminal or series-connected configuration with the perovskite top cell. By optimizing the bottom and top cell parameters, a tandem cell with an efficiency of 31.78% was reached. Next, planar Si solar cells were fabricated, and the effects of single- and double-layer SiNx films deposited on the cells were explored. Silicon nitride was sputtered onto planar Si samples, and the refractive index and thicknesses of the films were measured using ellipsometry. A range of refractive indices can be reached by adjusting the gas flow rate ratios of nitrogen (N2) and argon (Ar) in the system. The refractive index and thickness of the film affect where the minimum of the reflection curve is located. For Si, the optimum refractive index of a single-layer passivation film is 1.85 with a thickness of 80nm so that the minimum reflection is at 600nm, which is where the photon flux is maximized. However, using a double-layer film of SiNx, the Si solar cell performance is further improved due to surface passivation and lowered surface reflectivity. A bottom layer film with a higher refractive index passivates the Si cell and reduces surface reflectivity, while the top layer film with a smaller refractive index further reduces the surface reflectivity. The refractive indices and thicknesses of the double-layer films were varied, and current-voltage (IV) and external quantum efficiency (EQE) measurements were taken. The double-layer films resulted in an absolute value increase in efficiency of up to 1.8%.
Style APA, Harvard, Vancouver, ISO itp.
6

Schulze, Patricia S. C. [Verfasser], Harald [Akademischer Betreuer] Hillebrecht i Stefan [Akademischer Betreuer] Glunz. "High band gap perovskite absorbers for application in monolithic perovskite silicon tandem solar cells". Freiburg : Universität, 2020. http://d-nb.info/122336612X/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Komatu, Yuji. "Study on silicon-based tandem solar cells with novel structure towards super high efficiency". Kyoto University, 1997. http://hdl.handle.net/2433/202311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Zafoschnig, Lisa Anna. "SnOx electron selective layers for perovskite/silicon tandem solar cells using atomic layer deposition". Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245992.

Pełny tekst źródła
Streszczenie:
In this work the application of ALD deposited SnOx films as electron transport layers in perovskite solar cells is analysed. Processes to fabricate homogeneous, transparent and conductive tin oxide films were developed on an Oxford Instruments FlexAL tool using a TDMASn precursor and H2O as oxidiser. Two process regimes were investigated; an ALD regime, where the precursor gases are fully separated by long purging steps and a pulsed-CVD regime, where short purge times allow for continuous reactions. Both process regimes were analysed at deposition temperatures from 100 – 250°C and showed a decrease in growth rate with an increase in refractive index for higher temperatures. In terms, of optical properties highly transparent films in the visible range (> 80%) were obtained for all analysed processes. The samples with the lowest absorption were SnOx films deposited at low temperatures in the pulsed-CVD regime. Films with low absorption also exhibited improved conductivity in the range of 200 – 500 Ωcm, which decreased further when the samples were heated. All investigated films were amorphous with a tin rich atomic composition of SnOx. The processes were performed to be compatible with n-i-p and inverted perovskite single junction solar cells as well as tandem devices on textured silicon bottom cells, due to conformal coating at low deposition temperatures and no need for thermal annealing steps. For the application on cell level, perovskite single junction solar cells in a n-i-p architecture were fabricated with a ~15 nm SnOx film as electron transport layer. To improve electron extraction properties different organic interlayers and mesoporous TiO2 were investigated below the perovskite absorber. It was seen that the use of PCBM on top of SnOx improved the solar cell performance of devices with a co-evaporated MAPbI3 absorber. Solar cells with efficiencies close to 6% were fabricated which exhibited a moderately high Voc of ~990 mV but low Jsc of < 10 mA/cm². For devices with wet-chemically deposited perovskite absorber materials, the fullerene solutions did not form a closed film due to wettability issues on SnOx and the risk of washing away by the spin-coated perovskite solution. SEM-images confirmed that no closed interlayers were formed in the wet-chemical devices which could be the cause of poor reproducibility for devices with a planar structure and SnOx as electron contact. The best performing device was achieved with SnOx and mesoporous TiO2 deposited by spin-coating and a MAPbI3 absorber. It showed a mean PCE from forward and reverse scans of 12.8% with a Voc > 990 mV and a Jsc close to 20 mA/cm². Compared to the TiO2 reference cells the devices using SnOx showed lower efficiencies but improved reproducibility and reduced hysteresis in the mesoporous structure. The produced cells serve as an initial proof of concept for the use of SnOx by ALD in the analysed solar cell structure.  To analyse the potential for commercialisation of perovskite based photovoltaic technologies a techno-economic analysis was performed. Taking into account up-scaled manufacturing processes for perovskite modules, manufacturing costs of 21.0 $/m² were calculated. This cost is below the calculated allowed extra costs for the top cell of a tandem device with 30 % efficiency, estimated at 30 – 80 $/m². Projections of the LCOE showed that perovskite single junction cells with a PCE of 15% and a lifetime of 25 years could achieve an LCOE of 5.2 c/kWh. For two-terminal tandem devices with a similar lifetime and an efficiency of 27% an LCOE of 6.6 c/kWh could potentially be achieved, making both technologies competitive with conventional energy technologies in Germany. An overview of literature on life cycle assessments showed that despite the use of lead based absorber materials, perovskite technologies have a minor environmental impact and are considered more sustainable than other photovoltaic technologies.
A I detta arbete appliceringen av ALD deponerade SnOx lager som selektiv kontakt till elektronerna perovskite solceller är analyserad. Processer för att fabricera homogena, transparenta och ledande SnOx lager utvecklades med en Oxford Instruments FlexAL med användnig av TDMASn gas och H2O. Två typer av processer analyserades; en ALD process, där dem reaktiva gaser är helt sepererade av långa rensande steg och en pulsed-CVD process, där korta rensningstider tillåter kontinuerliga reaktioner. Båda processer analyserades vid despositionstemperaturer från 100 till 250°C och visade en minsknig i tillväxtakten med en ökning i refractive index för högre temperaturer. Gällande optiska egenskaper, väldigt transparenta lager i det synliga området (> 80%) blev erhållna för alla analyserade processer. De proven med den lägsta absorptionen var SnOx filmer vid låga temperaturer i pulsed – CDV regimer. Lager med en låg absorption uppvisade ochså förbättrad ledningsförmåga inom intervaller från 200 – 500 Ωcm, som minskade ännu mer när proven blev uppvärmda. Alla utrettade lager var amorfisk med en hög andel tenn i SnOx. Procceserna genomfördes för att vara kompatibel med n-i-p och p-i-n perovskite solceller samt tandem apparater på texturerad kisel bottenceller, på grund av enhetlig beläggning vid låga depositionstemperaturer och inget behov av termisk behandling i efterhand. För applikationen på cellnivå, perovskite solceller i en n-i-p konstruktion tillverkades med ett ~15 nm SnOx  lager som selektiv kontakt till elektronerna. För att förbättra kontakten olika naturliga mellanskikter och mesoporös TiO2 undersöktes under det perovskite lagret. Det sågs att användnigen av PCBM på SnOx förbättrade funktionen av solcellerna av apparater med en dunstad MAPbI3 absorbator. Solceller med effektivitet nära 6% tillverkades, som ledde till en medelmåttligt hög Voc vid ~990 mV men låg Jsc vid < 10 mA/cm². För apparater med perovskite deponerade vid spin-coating, fullerene-lösningen bildade inget stängt lager på grund av vätningsproblem på SnOx och risken att tvätta bort den spin-coated perovskite lösningen. SEM-bilder bekräftade att inga stängda mellanskikter bildades i dem våtkemiska apparater. Det skulle kunna vara grunden till den dåliga reproducerbarheten av apparater med  en platt struktur och SnOx som selektiv kontakt till elektronerna. Den apparaten som uppträdde bäst uppnåddes med SnOx och mesoporös TiO2 deponerade vid spin-coating och en MAPbI3 absorbator. Det visade en genomsnittlig verkningsgrad av 12,8% med Voc > 990 mV och Jsc nära 20 mA/cm². I jämförelse med TiO2 referensceller, dem apparatener som använde SnOx visade lägra effektivitet men förbättrat reproducerbarhet och minskad hysteresis i den mesoporösa strukturen. Dem producerade celler tjäna som första bevis av konceptet för användningen av SnOx vid ALD i den analyserade strukturen av solcellerna.  För att analysera potentialen av kommersialiseringen av perovskite baserade photovoltaiv tekniker en ekonomisk analys genomfördes. Att ta med i beräkning storskalig tillverkningsprocesser till perovskite moduler, tillverkningskostnader vid 21.0 $/m² kalkulerades. Denna kostnad är under dem kalkulerade tillåtna extra kostnader till toppcellen av en tandem apparat med 30% effektivitet, beräknad vid 30 – 80 $/m². Projektioner av LCOE visade att perovskite celler med en verkningsgrad vid 15% och en livstid på 25 år skulle kunna uppnå ett LCOE vid 5.2 c/kWh. Två-terminal tandem apparater men en liknande livstid och en effektivitet vid 27% ett LCOE vid 6.6 c/kWh skulle potentiellt kunna bli uppnått, om man gjorde båda tekniker konkurrenskraftiga med andra energitekniker i Tyskland. En översikt av litteratur om livscykelanalyser visade att, trots användningen av blybaserad absorbtionsmaterial, perovskite tekniker har en låg miljöpåverkan och anses vara mer hållbart än andra foltovoltaisk tekniker.
Style APA, Harvard, Vancouver, ISO itp.
9

Dai, Letian. "Silicon nanowire solar cells with μc-Si˸H absorbers for tandem radial junction devices". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS303.

Pełny tekst źródła
Streszczenie:
Dans cette thèse, nous avons fabriqué des cellules solaires à jonction radiale en nanofils de silicium avec du silicium microcristallin hydrogéné (µc-Si:H) comme absorbeur, par dépôt chimique en phase vapeur assisté par plasma à basse température (PECVD). Pour contrôler la densité de nanofils sur les substrats, nous avons utilisé des nanoparticules (NP) de dioxyde d'étain (SnO₂) d'un diamètre moyen de 55 nm, disponibles dans le commerce, comme précurseur du catalyseur Sn pour la croissance des nanofils de silicium. La distribution des nanoparticules de SnO₂ sur le substrat a été contrôlée par centrifugation et dilution du colloïde de SnO₂, en combinaison avec la fonctionnalisation du substrat. Par la suite, le SnO₂ est réduit en Sn métallique après le traitement par plasma de H₂, suivi de la croissance, par la technique vapeur-liquide-solide (VLS) assistée par plasma, de nanofils de Si sur lesquels sont déposées les couches P, I et N constituant les cellules solaires à jonction radiale. Nous avons atteint un taux de croissance élevé des nanofils de Si, jusqu'à 70%, avec une très large gamme de densité, de 10⁶ à 10⁹ /cm². Comme approche supplémentaire de contrôle de la densité des nanofils, nous avons utilisé du Sn évaporé comme précurseur du catalyseur Sn. Nous avons étudié l'effet de l'épaisseur de Sn évaporé, l'effet de la durée du traitement au plasma de H₂ et l'effet du débit de gaz H₂ dans le dans le mélange de précurseurs, sur la densité des nanofils. L'ellipsométrie spectroscopique in-situ (SE) a été utilisée pour contrôler la croissance des nanofils et le dépôt des couches de µc-Si:H sur les SiNWs. En combinant les résultats de in-situ SE et de microscopie électronique à balayage, une relation entre l'intensité du signal de SE pendant la croissance et la longueur et la densité des nanofils a été démontrée, ce qui permet d'estimer ces paramètres en cours de croissance. Nous avons réalisé une étude systématique des matériaux (couches intrinsèques et dopées de type n ou p de µc-Si:H, couches dopées d'oxyde de silicium microcristallin hydrogéné, µcSiOx:H) et des cellules solaires obtenues dans deux réacteurs à plasma appelés "PLASFIL" et "ARCAM". Les épaisseurs de revêtement sur substrat lisse et sur les nanofils ont été déterminées et nous avons obtenu une relation linéaire entre les deux, ce qui permet de concevoir un revêtement conforme sur les nanofils pour chaque couche avec une épaisseur optimale. Les paramètres des nanofils et des matériaux, affectant la performance des cellules solaires à jonction radiale, ont été systématiquement étudiés, les principaux étant la longueur et la densité des nanofils, l'épaisseur de la couche intrinsèque de µc-Si:H, l'utilisation de µc-SiOx:H et le réflecteur arrière en Ag. Enfin, avec les cellules solaires à jonction radiale en nanofils de silicium optimisées utilisant le µc-Si:H comme absorbeur, nous avons atteint un rendement de conversion de l'énergie de 4,13 % avec Voc = 0,41 V, Jsc = 14,4 mA/cm² et FF = 69,7%. Cette performance est supérieure de plus de 40 % à l'efficacité record de 2,9 % publiée précédemment
In this thesis, we have fabricated silicon nanowire (SiNW) radial junction solar cells with hydrogenated microcrystalline silicon (μc-Si:H) as the absorber via low-temperature plasma-enhanced chemical vapor deposition (PECVD). To control the density of NW on the substrates, we have used commercially available tin dioxide (SnO₂) nanoparticles (NPs) with an average diameter of 55 nm as the precursor of Sn catalyst for the growth of SiNWs. The distribution of SnO₂ NPs on the substrate has been controlled by centrifugation and the dilution of the SnO₂ colloid, combined with the functionalization of the substrate. Subsequently, SnO₂ is reduced to metallic Sn after the H₂ plasma treatment, followed by the plasma-assisted vapor-liquid-solid (VLS) growth of SiNWs upon which the P, I and N layers constituting the radial junction solar cells are deposited. We have achieved a high yield growth of SiNWs up to 70% with a very wide range of NW density, from 10⁶ to 10⁹ /cm². As an additional approach of controlling the density of SiNWs we have used evaporated Sn as the precursor of Sn catalyst. We have studied the effect of the thickness of evaporated Sn, the effect of duration of H₂ plasma treatment and the effect of H₂ gas flow rate in the plasma, on the density of SiNWs.In-situ spectroscopic ellipsometry (SE) was used for monitoring the growth of SiNWs and the deposition of the layers of μc-Si:H on SiNWs. Combining in-situ SE and SEM results, a relationship between the intensity of SE signal and the length and the density of SiNWs during the growth was demonstrated, which allows to estimate the density and the length of SiNWs during the growth. We have carried out a systematic study of materials (intrinsic, p-type,n-type µc-Si:H and µcSiOx:H doped layers) and solar cells obtained in two plasma reactors named “PLASFIL” and “ARCAM”. The thicknesses of coating on the flat substrate and on the SiNWs have been determined with a linear relation which helps to design a conformal coating on SiNWs for each layer with an optimal thickness. The parameters of the SiNWs and the materials, affecting the performance of radial junction solar cells, have been systematically studied, the main ones being the length and the density of SiNWs, the thickness of intrinsic layer of μc-Si:H on SiNWs, the use of the hydrogenated microcrystalline silicon oxide (μc-SiOx:H) and the back reflector Ag. Finally, with the optimized silicon nanowire radial junction solar cells using the μc-Si:H as the absorber we have achieved an energy conversion efficiency of 4.13 % with Voc = 0.41 V, Jsc = 14.4 mA/cm² and FF = 69.7%. This performance is more than 40 % better than the previous published record efficiency of 2.9 %
Style APA, Harvard, Vancouver, ISO itp.
10

Michaud, Amadeo. "III-V / Silicon tandem solar cell grown with molecular beam epitaxy". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS247.

Pełny tekst źródła
Streszczenie:
Le photovoltaïque terrestre est actuellement largement dominé par des dispositifs à base de Silicium. La limite théorique d’efficacité de photoconversion pour les cellules solaires en silicium est de l’ordre de 29%. Avec des modules photovoltaïques ayant une efficacité de 26.3% sur le marché, la filière Si est à un niveau de maturité avancée et exploite déjà la quasi-totalité du potentiel de ce genre de cellule solaires. Le travail exposé ici traite d’une autre voie d’amélioration de l’efficacité de conversion des dispositifs photovoltaïques. En effet, les cellules solaires tandem, assemblées en empilant plusieurs cellules permettent de dépasser les limites associées aux cellules Si. La complémentarité importante des cellules solaire III-V avec les cellules Si permettrai en théorie d’atteindre plus de 40% d’efficacité. Cette thèse vise à l’élaboration de cellule III-V performante et compatible avec un usage en tandem. Dans un premier temps, l’épitaxie d’alliages phosphures a été étudiée et en particulier l’influence des conditions de croissance sur le GaInP. Une réduction de la pression en phosphore durant la croissance provoque des modulations de composition au sein de l’alliage. La température a un impact significatif sur la valeur de bande interdite qui diminue en augmentant la température. Des caractérisations de photoluminescence ont permis de définir les conditions optimales de croissance en maximisant le signal de luminescence de l’alliage. L’étude a notamment révélé que cru dans les conditions choisies, le GaInP présente moins de défaut et d’états profonds qu’à plus faibles températures de croissance. Enfin la capacité à atteindre des niveaux de dopages élevés dans l’alliage AlGaInP et l’impact de sa composition sur le dopage ont étés étudié. Dans un second temps, la structure des cellules solaires simple jonction GaInP a été optimisée. Nous illustrons l’impact de la passivation de la surface des cellules par AlInP et AlGaInP, ainsi que l’amélioration du photo-courant par l’amincissement de l’émetteur dopé n. L’introduction de couche non-dopée dans la structure ne permit pas de remédier au problème de collection des porteurs constaté dans les cellules. La couche limitant l’efficacité des cellules est composée de p-GaInP. Des caractérisations par Cathodoluminescence et Fluorescence résolue en temps d’échantillons identiques à cette couche ont été menées. Elles ont mis en avant une faible longueur de diffusion des porteurs générés dans le matériau. La comparaison de ces propriétés avec la littérature et celle mesurées pour GaInP épitaxié par MOCVD, indique que l’amélioration de l’efficacité des cellules passe par une augmentation de la mobilité des porteurs au sein du GaInP. Une solution pratique, combinant GaInP et AlGaAs dans une cellule à hétérojonction a été mise en œuvre. Ce type de structure est une autre perspective intéressante à l’avenir puisque des efficacités à l’état de l’art ont été mesurées. Enfin nous avons développé un procédé permettant d’adapter les cellules pour un usage tandem. Les structures sont crues en inversé puis transférées sur verre ou wafer de silicium sans endommager leur performance. Toutefois, des améliorations sont toujours nécessaires pour permettre l’assemblage d’une cellule tandem fonctionnelle. En effet, la non-planéité introduite par les contacts arrières de la cellule III-V cause actuellement des problèmes de collage
Terrestrial photovoltaic is dominated by Silicon based devices. For this type of solar cells, the theory predicts an efficiency limit of 29%. With photovoltaic modules showing 26.6% efficiency already, Silicon-based modules is a mature technology and harvest almost their full potential. In this work, we intend to explore another path toward the enhancement of photovoltaic conversion efficiency. Tandem solar cells that consist in stacking sub-cells, allow to overcome the Si efficiency limit. Since solar cells made of III-V semiconductors are complementary to Silicon solar cells, theory predicts that efficiency above 40% is attainable when combining those types of cells. Here we focus on the elaboration of a performant III-V solar cell, compatible for a tandem use. The first stage of the PhD was to build know-how on phosphide alloys epitaxy with MBE. The influence of the growth conditions on GaInP properties was studied. We noted that composition modulations appear in the alloy when grown with low phosphorus pressure. The growth temperature also impacts the material bandgap, which reduces while increasing the temperature. Photoluminescence characterization served to select the best growth conditions by maximizing the photoluminescence efficiency. We could also highlight that in the conditions chosen, the GaInP exhibits less defect states. AlGaInP alloys are used for passivation purposes in the cells, the influence of the composition of the alloy on the Beryllium doping efficiency was studied. Then GaInP single junction solar cells were fabricated. The different layers composing the cells were optimized. The impact of the front surface passivation with AlGaInP and AlInP was emphasized; improvement of the cell photocurrent by the thinning of the n-doped GaInP layer was also demonstrated. The introduction of a non-intentionally-doped layer in the structure was tested in order to remedy the limits encountered with photocurrent collection. The p-GaInP composing the cells was eventually identified as the limiting factor. In depth characterization of samples mimicking the limiting layer was performed with cathodoluminescence and time-resolved fluorescence. A small diffusion length of the generated carriers was evidenced. Comparison with MOVPE and with literature values suggests that improving the carrier mobility in this layer is the main route to follow for improving of the GaInP cell efficiency. A practical solution was proposed and implemented: we designed a cell combining GaInP and AlGaAs in a heterojunction cell. This structure proves to be very relevant for the project since state of the art photoconversion efficiency of 18.7% was obtained. Finally a process was developed to adapt the III-V solar cells to the tandem configuration. Inverted PV cells structures were grown and transferred on glass or Silicon hosts without degradation of their efficiency. Further improvement of the process is needed to build a full tandem device, in particular the back metallization of the III-V cells must be compatible with the bonding of the cells on the host substrate
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Silicon Tandem Cells"

1

Chaudhary, Jatin Kumar, Jiaqing Liu, Jukka-Pekka Skön, Yen Wie Chen, Rajeev Kumar Kanth i Jukka Heikkonen. "Optimization of Silicon Tandem Solar Cells Using Artificial Neural Networks". W Lecture Notes in Computer Science, 392–403. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34885-4_30.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Katkar, S. V., K. G. Kharade, N. S. Patil, V. R. Sonawane, S. K. Kharade i R. K. Kamat. "Predictive Modeling of Tandem Silicon Solar Cell for Calculating Efficiency". W Communications in Computer and Information Science, 183–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88244-0_18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Heidarzadeh, H., A. Rostami, M. Dolatyari i G. Rostami. "Performance Analysis of Ultra-Thin Silicon Based Tunnel Junctions for Tandem Solar Cell Applications". W Springer Proceedings in Physics, 125–30. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05521-3_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

M. Mulati, David, i Timonah Soita. "Solar Solutions for the Future". W Recent Advances in Multifunctional Perovskite Materials [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105006.

Pełny tekst źródła
Streszczenie:
The energy conversion efficiency and limits of perovskite/silicon solar cells are investigated. The influence of a layered approach in preventing lead leakage in perovskite solar cells is discussed. The highest efficiency perovskite tandem to date was achieved by pairing a perovskite top cell with a Si bottom cell in a four-terminal configuration, yielding 26.4%. Perovskite cell integrated with crystalline silicon cell to form a tandem solar device has shown high performance above the single pn-junction silicon devices. Although sufficient work and different strategies have been applied to increase efficiency in these devices, the tandem application has achieved efficiency of 29% in a short period.
Style APA, Harvard, Vancouver, ISO itp.
5

Python, Martin. "TANDEM AND MULTI-JUNCTION SOLAR CELLS". W Thin-Film Silicon Solar Cells, 237–68. EPFL Press, 2010. http://dx.doi.org/10.1201/b16327-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

"Chapter 4 Perovskite/silicon heterojunction tandem solar cells". W Perovskite-Based Solar Cells, 44–68. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110760613-005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jelley, Nick. "5. Solar photovoltaics". W Renewable Energy: A Very Short Introduction, 60–76. Oxford University Press, 2020. http://dx.doi.org/10.1093/actrade/9780198825401.003.0005.

Pełny tekst źródła
Streszczenie:
‘Solar photovoltaics’ considers developments in solar technology and their potential contribution to global energy generation. Since the invention of silicon solar cells, it has taken some sixty years for their efficiency to increase to over 20 per cent, and for their cost to fall by several hundred times, to the point where the electricity generated by silicon photovoltaic cells can now be cost competitive with that generated by fossil fuels. It has required considerable development and mass production to achieve this, as the processing of silicon to form a solar cell is complex. Silicon cells now account for about 95 per cent of all solar cells; under development are higher efficiency silicon-perovskite tandem cells. In operation, solar photovoltaic power produces no pollutants, no greenhouse gases, and is a safe way of generating electricity. There are no moving parts, which reduces maintenance, and in Europe, it takes only between one and two and a half years, dependent on location, to generate the same amount of energy as was used in making the solar panels. New generators are increasingly photovoltaic, and distributed generation in residential systems is improving access to electricity across the globe. With massive investment, solar photovoltaics could provide about 40 per cent of the world’s energy demand by 2050.
Style APA, Harvard, Vancouver, ISO itp.
8

YAMAGISHI, H., K. ASAOKA, W. A. NEVIN, H. NISHIO, T. ENDOH, T. FUJIHARA, K. TSUGE i Y. TAWADA. "EFFICIENCY AND STABILITY OF AMORPHOUS SILICON TWO-STACKED TANDEM SOLAR CELLS". W Clean and Safe Energy Forever, 152–56. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-08-037193-1.50036-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ajmal Khan, M., i Yasuaki Ishikawa. "Indium (In)-Catalyzed Silicon Nanowires (Si NWs) Grown by the Vapor–Liquid–Solid (VLS) Mode for Nanoscale Device Applications". W Nanowires - Recent Progress. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97723.

Pełny tekst źródła
Streszczenie:
Stacking fault free and planar defects (twin plane) free catalyzed Si nanowires (Si NWs) is essential for the carrier transport in the nanoscale devices applications. In this chapter, In-catalyzed, vertically aligned and cone-shaped Si NWs arrays were grown by using vapor–liquid–solid (VLS) mode on Si (111) substrates. We have successfully controlled the verticality and (111)-orientation of Si NWs as well as scaled down the diameter to 18 nm. The density of Si NWs was also enhanced from 2.5 μm−2 to 70 μm−2. Such vertically aligned, (111)-oriented p-type Si NWs are very important for the nanoscale device applications including Si NWs/c-Si tandem solar cells and p-Si NWs/n-InGaZnO Heterojunction LEDs. Next, the influence of substrate growth temperature (TS), cooling rate (∆TS/∆𝑡) on the formation of planar defects, twining along [112] direction and stacking fault in Si NWs perpendicular to (111)-orientation were deeply investigated. Finally, one simple model was proposed to explain the formation of stacking fault, twining of planar defects in perpendicular direction to the axial growth direction of Si NWs. When the TS was decreased from 600°C with the cooling rate of 100°C/240 sec to room temperature (RT) after Si NWs growth then the twin planar defects perpendicular to the substrate and along different segments of (111)-oriented Si NWs were observed.
Style APA, Harvard, Vancouver, ISO itp.
10

NATH, P., M. IZU i S. R. OVSHINSKY. "PRODUCTION OF AMORPHOUS SILICON ALLOY BASED TANDEM SOLAR CELL POWER MODULES IN A ROLL-TO-ROLL PROCESS". W Advances In Solar Energy Technology, 169. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-034315-0.50038-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Silicon Tandem Cells"

1

Topcu, Seyma, Matteo Schiliró, Lydia Beisel, Pasky Wete, Kathrin Ohmer, Clara Aranda Alonso, Weiwei Zuo i in. "Towards 3-terminal perovskite/silicon tandem solar cells: Influence of silicon bottom cell on tandem cell fabrication". W SILICONPV 2022, THE 12TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0140291.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Luderer, Christoph, Henning Nagel, Frank Feldmann, Jan Christoph Goldschmidt, Martin Bivour i Martin Hermle. "PERC-like Si bottom solar cells for industrial perovskite-Si tandem solar cells". W SiliconPV 2021, The 11th International Conference on Crystalline Silicon Photovoltaics. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0097026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Babal, P., H. J. van Veen, M. Workum, A. H. M. Smets i M. Zeman. "Doped silicon oxide layers for tandem silicon solar cells". W Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/pv.2012.pw1b.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zin, Ngwe Soe, Andrew Blakers i Vernie Everett. "Miniature silicon solar cells for High Efficiency Tandem Cells". W 2008 Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD). IEEE, 2008. http://dx.doi.org/10.1109/commad.2008.4802152.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Yu, Zhengshan (Jason), Mehdi Leilaeioun, Kathryn Fisher, Mathieu Boccard i Zachary Holman. "Tandem Solar Cells with Infrared-Tuned Silicon Bottom Cells". W Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/pv.2016.pw2b.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bett, Alexander J., David Chojniak, Michael Schachtner, S. Kasimir Reichmuth, Patricia S. C. Schulze, Özde S. Kabakli, Minasadat Heydarian i in. "Spectrometric determination of current matching in perovskite/silicon tandem solar cells". W SILICONPV 2022, THE 12TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0141804.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chojniak, David, Alexander J. Bett, Jochen Hohl-Ebinger, S. Kasimir Reichmuth, Michael Schachtner i Gerald Siefer. "LED solar simulators – A spectral adjustment procedure for tandem solar cells". W SILICONPV 2022, THE 12TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0140990.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Schulze, Patricia S. C., Jan Christoph Goldschmidt, Alexander J. Bett, Martin Bivour, Raphael Efinger, Bastian Fett, Angelika Hähnel i in. "Monolithic 2-terminal perovskite silicon tandem solar cells". W 13th Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.hopv.2021.061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kanda, Hiroyuki, Abdullah Uzum, Hitoshi Nishino i Seigo Ito. "Perovskite/p-type crystal silicon tandem solar cells". W 2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2016. http://dx.doi.org/10.1109/am-fpd.2016.7543683.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Jandl, Christine, Wilma Dewald, Ulrich W. Paetzold, Aad Gordijn, Christoph Pflaum i Helmut Stiebig. "Simulation of tandem thin-film silicon solar cells". W SPIE Photonics Europe, redaktorzy Ralf B. Wehrspohn i Andreas Gombert. SPIE, 2010. http://dx.doi.org/10.1117/12.854366.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Silicon Tandem Cells"

1

McGehee, Michael. Perovskite on Silicon Tandem Solar Cells. Office of Scientific and Technical Information (OSTI), marzec 2021. http://dx.doi.org/10.2172/1830219.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Paul, W. Research on amorphous silicon-germanium alloys for tandem solar cells. Office of Scientific and Technical Information (OSTI), czerwiec 1989. http://dx.doi.org/10.2172/5691478.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii