Gotowa bibliografia na temat „Silicon Tandem Cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Silicon Tandem Cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Silicon Tandem Cells"
Tian, Xueyu, Samuel D. Stranks i Fengqi You. "Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells". Science Advances 6, nr 31 (lipiec 2020): eabb0055. http://dx.doi.org/10.1126/sciadv.abb0055.
Pełny tekst źródłaShukla, Naman, Anil Kumar Verma i Sanjay Tiwari. "Optimization of Efficient Perovskite-Si Hybrid Tandem Solar Cells". Material Science Research India 20, nr 1 (31.05.2023): 25–40. http://dx.doi.org/10.13005/msri/200104.
Pełny tekst źródłaUlbrich, C., C. Zahren, A. Gerber, B. Blank, T. Merdzhanova, A. Gordijn i U. Rau. "Matching of Silicon Thin-Film Tandem Solar Cells for Maximum Power Output". International Journal of Photoenergy 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/314097.
Pełny tekst źródłaWeiss, Dirk N. "Tandem solar cells beyond perovskite-silicon". Joule 5, nr 9 (wrzesień 2021): 2247–50. http://dx.doi.org/10.1016/j.joule.2021.08.009.
Pełny tekst źródłaSingh, Manvika, Rudi Santbergen, Indra Syifai, Arthur Weeber, Miro Zeman i Olindo Isabella. "Comparing optical performance of a wide range of perovskite/silicon tandem architectures under real-world conditions". Nanophotonics 10, nr 8 (1.06.2020): 2043–57. http://dx.doi.org/10.1515/nanoph-2020-0643.
Pełny tekst źródłaHou, Yi, Erkan Aydin, Michele De Bastiani, Chuanxiao Xiao, Furkan H. Isikgor, Ding-Jiang Xue, Bin Chen i in. "Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon". Science 367, nr 6482 (5.03.2020): 1135–40. http://dx.doi.org/10.1126/science.aaz3691.
Pełny tekst źródłaJäger, Klaus, Johannes Sutter, Martin Hammerschmidt, Philipp-Immanuel Schneider i Christiane Becker. "Prospects of light management in perovskite/silicon tandem solar cells". Nanophotonics 10, nr 8 (1.06.2020): 1991–2000. http://dx.doi.org/10.1515/nanoph-2020-0674.
Pełny tekst źródłaGiliberti, Gemma, Francesco Di Giacomo i Federica Cappelluti. "Three Terminal Perovskite/Silicon Solar Cell with Bipolar Transistor Architecture". Energies 15, nr 21 (1.11.2022): 8146. http://dx.doi.org/10.3390/en15218146.
Pełny tekst źródłaSong, Hoyoung, Changhyun Lee, Jiyeon Hyun, Sang-Won Lee, Dongjin Choi, Dowon Pyun, Jiyeon Nam i in. "Monolithic Perovskite-Carrier Selective Contact Silicon Tandem Solar Cells Using Molybdenum Oxide as a Hole Selective Layer". Energies 14, nr 11 (26.05.2021): 3108. http://dx.doi.org/10.3390/en14113108.
Pełny tekst źródłaQian, Jiadong, Marco Ernst, Nandi Wu i Andrew Blakers. "Impact of perovskite solar cell degradation on the lifetime energy yield and economic viability of perovskite/silicon tandem modules". Sustainable Energy & Fuels 3, nr 6 (2019): 1439–47. http://dx.doi.org/10.1039/c9se00143c.
Pełny tekst źródłaRozprawy doktorskie na temat "Silicon Tandem Cells"
Bett, Alexander Jürgen [Verfasser], i Stefan [Akademischer Betreuer] Glunz. "Perovskite silicon tandem solar cells : : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells". Freiburg : Universität, 2020. http://d-nb.info/1214179703/34.
Pełny tekst źródłaMirabelli, Alessandro James. "Highly efficient monolithic Perovskite/Silicon bifacial tandem solar cells". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20369/.
Pełny tekst źródłaRedorici, Lisa. "Efficiency limits for silicon/perovskite tandem solar cells: a theoretical model". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9531/.
Pełny tekst źródłaGugole, Marika. "Development and characterisation of silicon solar cells with recombination interconnects for future tandem solar cells". Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355765.
Pełny tekst źródłaDavidson, Lauren Michel. "Strategies for high efficiency silicon solar cells". Thesis, University of Iowa, 2017. https://ir.uiowa.edu/etd/5452.
Pełny tekst źródłaSchulze, Patricia S. C. [Verfasser], Harald [Akademischer Betreuer] Hillebrecht i Stefan [Akademischer Betreuer] Glunz. "High band gap perovskite absorbers for application in monolithic perovskite silicon tandem solar cells". Freiburg : Universität, 2020. http://d-nb.info/122336612X/34.
Pełny tekst źródłaKomatu, Yuji. "Study on silicon-based tandem solar cells with novel structure towards super high efficiency". Kyoto University, 1997. http://hdl.handle.net/2433/202311.
Pełny tekst źródłaZafoschnig, Lisa Anna. "SnOx electron selective layers for perovskite/silicon tandem solar cells using atomic layer deposition". Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245992.
Pełny tekst źródłaA I detta arbete appliceringen av ALD deponerade SnOx lager som selektiv kontakt till elektronerna perovskite solceller är analyserad. Processer för att fabricera homogena, transparenta och ledande SnOx lager utvecklades med en Oxford Instruments FlexAL med användnig av TDMASn gas och H2O. Två typer av processer analyserades; en ALD process, där dem reaktiva gaser är helt sepererade av långa rensande steg och en pulsed-CVD process, där korta rensningstider tillåter kontinuerliga reaktioner. Båda processer analyserades vid despositionstemperaturer från 100 till 250°C och visade en minsknig i tillväxtakten med en ökning i refractive index för högre temperaturer. Gällande optiska egenskaper, väldigt transparenta lager i det synliga området (> 80%) blev erhållna för alla analyserade processer. De proven med den lägsta absorptionen var SnOx filmer vid låga temperaturer i pulsed – CDV regimer. Lager med en låg absorption uppvisade ochså förbättrad ledningsförmåga inom intervaller från 200 – 500 Ωcm, som minskade ännu mer när proven blev uppvärmda. Alla utrettade lager var amorfisk med en hög andel tenn i SnOx. Procceserna genomfördes för att vara kompatibel med n-i-p och p-i-n perovskite solceller samt tandem apparater på texturerad kisel bottenceller, på grund av enhetlig beläggning vid låga depositionstemperaturer och inget behov av termisk behandling i efterhand. För applikationen på cellnivå, perovskite solceller i en n-i-p konstruktion tillverkades med ett ~15 nm SnOx lager som selektiv kontakt till elektronerna. För att förbättra kontakten olika naturliga mellanskikter och mesoporös TiO2 undersöktes under det perovskite lagret. Det sågs att användnigen av PCBM på SnOx förbättrade funktionen av solcellerna av apparater med en dunstad MAPbI3 absorbator. Solceller med effektivitet nära 6% tillverkades, som ledde till en medelmåttligt hög Voc vid ~990 mV men låg Jsc vid < 10 mA/cm². För apparater med perovskite deponerade vid spin-coating, fullerene-lösningen bildade inget stängt lager på grund av vätningsproblem på SnOx och risken att tvätta bort den spin-coated perovskite lösningen. SEM-bilder bekräftade att inga stängda mellanskikter bildades i dem våtkemiska apparater. Det skulle kunna vara grunden till den dåliga reproducerbarheten av apparater med en platt struktur och SnOx som selektiv kontakt till elektronerna. Den apparaten som uppträdde bäst uppnåddes med SnOx och mesoporös TiO2 deponerade vid spin-coating och en MAPbI3 absorbator. Det visade en genomsnittlig verkningsgrad av 12,8% med Voc > 990 mV och Jsc nära 20 mA/cm². I jämförelse med TiO2 referensceller, dem apparatener som använde SnOx visade lägra effektivitet men förbättrat reproducerbarhet och minskad hysteresis i den mesoporösa strukturen. Dem producerade celler tjäna som första bevis av konceptet för användningen av SnOx vid ALD i den analyserade strukturen av solcellerna. För att analysera potentialen av kommersialiseringen av perovskite baserade photovoltaiv tekniker en ekonomisk analys genomfördes. Att ta med i beräkning storskalig tillverkningsprocesser till perovskite moduler, tillverkningskostnader vid 21.0 $/m² kalkulerades. Denna kostnad är under dem kalkulerade tillåtna extra kostnader till toppcellen av en tandem apparat med 30% effektivitet, beräknad vid 30 – 80 $/m². Projektioner av LCOE visade att perovskite celler med en verkningsgrad vid 15% och en livstid på 25 år skulle kunna uppnå ett LCOE vid 5.2 c/kWh. Två-terminal tandem apparater men en liknande livstid och en effektivitet vid 27% ett LCOE vid 6.6 c/kWh skulle potentiellt kunna bli uppnått, om man gjorde båda tekniker konkurrenskraftiga med andra energitekniker i Tyskland. En översikt av litteratur om livscykelanalyser visade att, trots användningen av blybaserad absorbtionsmaterial, perovskite tekniker har en låg miljöpåverkan och anses vara mer hållbart än andra foltovoltaisk tekniker.
Dai, Letian. "Silicon nanowire solar cells with μc-Si˸H absorbers for tandem radial junction devices". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS303.
Pełny tekst źródłaIn this thesis, we have fabricated silicon nanowire (SiNW) radial junction solar cells with hydrogenated microcrystalline silicon (μc-Si:H) as the absorber via low-temperature plasma-enhanced chemical vapor deposition (PECVD). To control the density of NW on the substrates, we have used commercially available tin dioxide (SnO₂) nanoparticles (NPs) with an average diameter of 55 nm as the precursor of Sn catalyst for the growth of SiNWs. The distribution of SnO₂ NPs on the substrate has been controlled by centrifugation and the dilution of the SnO₂ colloid, combined with the functionalization of the substrate. Subsequently, SnO₂ is reduced to metallic Sn after the H₂ plasma treatment, followed by the plasma-assisted vapor-liquid-solid (VLS) growth of SiNWs upon which the P, I and N layers constituting the radial junction solar cells are deposited. We have achieved a high yield growth of SiNWs up to 70% with a very wide range of NW density, from 10⁶ to 10⁹ /cm². As an additional approach of controlling the density of SiNWs we have used evaporated Sn as the precursor of Sn catalyst. We have studied the effect of the thickness of evaporated Sn, the effect of duration of H₂ plasma treatment and the effect of H₂ gas flow rate in the plasma, on the density of SiNWs.In-situ spectroscopic ellipsometry (SE) was used for monitoring the growth of SiNWs and the deposition of the layers of μc-Si:H on SiNWs. Combining in-situ SE and SEM results, a relationship between the intensity of SE signal and the length and the density of SiNWs during the growth was demonstrated, which allows to estimate the density and the length of SiNWs during the growth. We have carried out a systematic study of materials (intrinsic, p-type,n-type µc-Si:H and µcSiOx:H doped layers) and solar cells obtained in two plasma reactors named “PLASFIL” and “ARCAM”. The thicknesses of coating on the flat substrate and on the SiNWs have been determined with a linear relation which helps to design a conformal coating on SiNWs for each layer with an optimal thickness. The parameters of the SiNWs and the materials, affecting the performance of radial junction solar cells, have been systematically studied, the main ones being the length and the density of SiNWs, the thickness of intrinsic layer of μc-Si:H on SiNWs, the use of the hydrogenated microcrystalline silicon oxide (μc-SiOx:H) and the back reflector Ag. Finally, with the optimized silicon nanowire radial junction solar cells using the μc-Si:H as the absorber we have achieved an energy conversion efficiency of 4.13 % with Voc = 0.41 V, Jsc = 14.4 mA/cm² and FF = 69.7%. This performance is more than 40 % better than the previous published record efficiency of 2.9 %
Michaud, Amadeo. "III-V / Silicon tandem solar cell grown with molecular beam epitaxy". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS247.
Pełny tekst źródłaTerrestrial photovoltaic is dominated by Silicon based devices. For this type of solar cells, the theory predicts an efficiency limit of 29%. With photovoltaic modules showing 26.6% efficiency already, Silicon-based modules is a mature technology and harvest almost their full potential. In this work, we intend to explore another path toward the enhancement of photovoltaic conversion efficiency. Tandem solar cells that consist in stacking sub-cells, allow to overcome the Si efficiency limit. Since solar cells made of III-V semiconductors are complementary to Silicon solar cells, theory predicts that efficiency above 40% is attainable when combining those types of cells. Here we focus on the elaboration of a performant III-V solar cell, compatible for a tandem use. The first stage of the PhD was to build know-how on phosphide alloys epitaxy with MBE. The influence of the growth conditions on GaInP properties was studied. We noted that composition modulations appear in the alloy when grown with low phosphorus pressure. The growth temperature also impacts the material bandgap, which reduces while increasing the temperature. Photoluminescence characterization served to select the best growth conditions by maximizing the photoluminescence efficiency. We could also highlight that in the conditions chosen, the GaInP exhibits less defect states. AlGaInP alloys are used for passivation purposes in the cells, the influence of the composition of the alloy on the Beryllium doping efficiency was studied. Then GaInP single junction solar cells were fabricated. The different layers composing the cells were optimized. The impact of the front surface passivation with AlGaInP and AlInP was emphasized; improvement of the cell photocurrent by the thinning of the n-doped GaInP layer was also demonstrated. The introduction of a non-intentionally-doped layer in the structure was tested in order to remedy the limits encountered with photocurrent collection. The p-GaInP composing the cells was eventually identified as the limiting factor. In depth characterization of samples mimicking the limiting layer was performed with cathodoluminescence and time-resolved fluorescence. A small diffusion length of the generated carriers was evidenced. Comparison with MOVPE and with literature values suggests that improving the carrier mobility in this layer is the main route to follow for improving of the GaInP cell efficiency. A practical solution was proposed and implemented: we designed a cell combining GaInP and AlGaAs in a heterojunction cell. This structure proves to be very relevant for the project since state of the art photoconversion efficiency of 18.7% was obtained. Finally a process was developed to adapt the III-V solar cells to the tandem configuration. Inverted PV cells structures were grown and transferred on glass or Silicon hosts without degradation of their efficiency. Further improvement of the process is needed to build a full tandem device, in particular the back metallization of the III-V cells must be compatible with the bonding of the cells on the host substrate
Części książek na temat "Silicon Tandem Cells"
Chaudhary, Jatin Kumar, Jiaqing Liu, Jukka-Pekka Skön, Yen Wie Chen, Rajeev Kumar Kanth i Jukka Heikkonen. "Optimization of Silicon Tandem Solar Cells Using Artificial Neural Networks". W Lecture Notes in Computer Science, 392–403. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34885-4_30.
Pełny tekst źródłaKatkar, S. V., K. G. Kharade, N. S. Patil, V. R. Sonawane, S. K. Kharade i R. K. Kamat. "Predictive Modeling of Tandem Silicon Solar Cell for Calculating Efficiency". W Communications in Computer and Information Science, 183–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88244-0_18.
Pełny tekst źródłaHeidarzadeh, H., A. Rostami, M. Dolatyari i G. Rostami. "Performance Analysis of Ultra-Thin Silicon Based Tunnel Junctions for Tandem Solar Cell Applications". W Springer Proceedings in Physics, 125–30. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05521-3_16.
Pełny tekst źródłaM. Mulati, David, i Timonah Soita. "Solar Solutions for the Future". W Recent Advances in Multifunctional Perovskite Materials [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105006.
Pełny tekst źródłaPython, Martin. "TANDEM AND MULTI-JUNCTION SOLAR CELLS". W Thin-Film Silicon Solar Cells, 237–68. EPFL Press, 2010. http://dx.doi.org/10.1201/b16327-6.
Pełny tekst źródła"Chapter 4 Perovskite/silicon heterojunction tandem solar cells". W Perovskite-Based Solar Cells, 44–68. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110760613-005.
Pełny tekst źródłaJelley, Nick. "5. Solar photovoltaics". W Renewable Energy: A Very Short Introduction, 60–76. Oxford University Press, 2020. http://dx.doi.org/10.1093/actrade/9780198825401.003.0005.
Pełny tekst źródłaYAMAGISHI, H., K. ASAOKA, W. A. NEVIN, H. NISHIO, T. ENDOH, T. FUJIHARA, K. TSUGE i Y. TAWADA. "EFFICIENCY AND STABILITY OF AMORPHOUS SILICON TWO-STACKED TANDEM SOLAR CELLS". W Clean and Safe Energy Forever, 152–56. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-08-037193-1.50036-7.
Pełny tekst źródłaAjmal Khan, M., i Yasuaki Ishikawa. "Indium (In)-Catalyzed Silicon Nanowires (Si NWs) Grown by the Vapor–Liquid–Solid (VLS) Mode for Nanoscale Device Applications". W Nanowires - Recent Progress. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97723.
Pełny tekst źródłaNATH, P., M. IZU i S. R. OVSHINSKY. "PRODUCTION OF AMORPHOUS SILICON ALLOY BASED TANDEM SOLAR CELL POWER MODULES IN A ROLL-TO-ROLL PROCESS". W Advances In Solar Energy Technology, 169. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-034315-0.50038-0.
Pełny tekst źródłaStreszczenia konferencji na temat "Silicon Tandem Cells"
Topcu, Seyma, Matteo Schiliró, Lydia Beisel, Pasky Wete, Kathrin Ohmer, Clara Aranda Alonso, Weiwei Zuo i in. "Towards 3-terminal perovskite/silicon tandem solar cells: Influence of silicon bottom cell on tandem cell fabrication". W SILICONPV 2022, THE 12TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0140291.
Pełny tekst źródłaLuderer, Christoph, Henning Nagel, Frank Feldmann, Jan Christoph Goldschmidt, Martin Bivour i Martin Hermle. "PERC-like Si bottom solar cells for industrial perovskite-Si tandem solar cells". W SiliconPV 2021, The 11th International Conference on Crystalline Silicon Photovoltaics. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0097026.
Pełny tekst źródłaBabal, P., H. J. van Veen, M. Workum, A. H. M. Smets i M. Zeman. "Doped silicon oxide layers for tandem silicon solar cells". W Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/pv.2012.pw1b.4.
Pełny tekst źródłaZin, Ngwe Soe, Andrew Blakers i Vernie Everett. "Miniature silicon solar cells for High Efficiency Tandem Cells". W 2008 Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD). IEEE, 2008. http://dx.doi.org/10.1109/commad.2008.4802152.
Pełny tekst źródłaYu, Zhengshan (Jason), Mehdi Leilaeioun, Kathryn Fisher, Mathieu Boccard i Zachary Holman. "Tandem Solar Cells with Infrared-Tuned Silicon Bottom Cells". W Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/pv.2016.pw2b.1.
Pełny tekst źródłaBett, Alexander J., David Chojniak, Michael Schachtner, S. Kasimir Reichmuth, Patricia S. C. Schulze, Özde S. Kabakli, Minasadat Heydarian i in. "Spectrometric determination of current matching in perovskite/silicon tandem solar cells". W SILICONPV 2022, THE 12TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0141804.
Pełny tekst źródłaChojniak, David, Alexander J. Bett, Jochen Hohl-Ebinger, S. Kasimir Reichmuth, Michael Schachtner i Gerald Siefer. "LED solar simulators – A spectral adjustment procedure for tandem solar cells". W SILICONPV 2022, THE 12TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0140990.
Pełny tekst źródłaSchulze, Patricia S. C., Jan Christoph Goldschmidt, Alexander J. Bett, Martin Bivour, Raphael Efinger, Bastian Fett, Angelika Hähnel i in. "Monolithic 2-terminal perovskite silicon tandem solar cells". W 13th Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.hopv.2021.061.
Pełny tekst źródłaKanda, Hiroyuki, Abdullah Uzum, Hitoshi Nishino i Seigo Ito. "Perovskite/p-type crystal silicon tandem solar cells". W 2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2016. http://dx.doi.org/10.1109/am-fpd.2016.7543683.
Pełny tekst źródłaJandl, Christine, Wilma Dewald, Ulrich W. Paetzold, Aad Gordijn, Christoph Pflaum i Helmut Stiebig. "Simulation of tandem thin-film silicon solar cells". W SPIE Photonics Europe, redaktorzy Ralf B. Wehrspohn i Andreas Gombert. SPIE, 2010. http://dx.doi.org/10.1117/12.854366.
Pełny tekst źródłaRaporty organizacyjne na temat "Silicon Tandem Cells"
McGehee, Michael. Perovskite on Silicon Tandem Solar Cells. Office of Scientific and Technical Information (OSTI), marzec 2021. http://dx.doi.org/10.2172/1830219.
Pełny tekst źródłaPaul, W. Research on amorphous silicon-germanium alloys for tandem solar cells. Office of Scientific and Technical Information (OSTI), czerwiec 1989. http://dx.doi.org/10.2172/5691478.
Pełny tekst źródła