Gotowa bibliografia na temat „Silicon photovoltaic module”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Silicon photovoltaic module”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Silicon photovoltaic module"
Kafui, Atsu Divine, István Seres i István Farkas. "Efficiency Comparison of Different Photovoltaic Modules". Acta Technologica Agriculturae 22, nr 1 (1.03.2019): 5–11. http://dx.doi.org/10.2478/ata-2019-0002.
Pełny tekst źródłaAli, Hafiz, Mubashar Mahmood, Muhammad Bashir, Muzaffar Ali i Aysha Siddiqui. "Outdoor testing of photovoltaic modules during summer in Taxila, Pakistan". Thermal Science 20, nr 1 (2016): 165–73. http://dx.doi.org/10.2298/tsci131216025a.
Pełny tekst źródłaAli, Hafiz, Muhammad Zafar, Muhammad Bashir, Muhammad Nasir, Muzaffar Ali i Aysha Siddiqui. "Effect of dust deposition on the performance of photovoltaic modules in Taxila, Pakistan". Thermal Science 21, nr 2 (2017): 915–23. http://dx.doi.org/10.2298/tsci140515046a.
Pełny tekst źródłaZekri, Wafaa Abd El-Basit. "Photovoltaic Modules for Indoor Energy Harvesting". JOURNAL OF ADVANCES IN PHYSICS 14, nr 1 (7.03.2018): 5222–31. http://dx.doi.org/10.24297/jap.v14i1.7063.
Pełny tekst źródłaJamel Kadia, Noor, Emad T. Hashim i Oday I. Abdullah. "PERFORMANCE OF DIFFERENT PHOTOVOLTAIC TECHNOLOGIES FOR AMORPHOUS SILICON (A-SI) AND COPPER INDIUM GALLIUM DI-SELENIDE (CIGS) PHOTOVOLTAIC MODULES". Journal of Engineering and Sustainable Development 26, nr 1 (3.01.2022): 95–105. http://dx.doi.org/10.31272/jeasd.26.1.10.
Pełny tekst źródłaLuboń, Wojciech, Grzegorz Pełka, Konstanty Marszałek i Anna Małek. "Performance Analysis of Crystalline Silicon and CIGS Photovoltaic Modules in Outdoor Measurement". Ecological Chemistry and Engineering S 24, nr 4 (1.12.2017): 539–49. http://dx.doi.org/10.1515/eces-2017-0035.
Pełny tekst źródłaNover, Jessica, Renate Zapf-Gottwick, Carolin Feifel, Michael Koch i Juergen Heinz Werner. "Leaching via Weak Spots in Photovoltaic Modules". Energies 14, nr 3 (29.01.2021): 692. http://dx.doi.org/10.3390/en14030692.
Pełny tekst źródłaBashir, Muhammad Anser, Hafiz Muhammad Ali, Shahid Khalil, Muzaffar Ali i Aysha Maryam Siddiqui. "Comparison of Performance Measurements of Photovoltaic Modules during Winter Months in Taxila, Pakistan". International Journal of Photoenergy 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/898414.
Pełny tekst źródłaTakatsuka, Hiromu, Yasuhiro Yamauchi, Keisuke Kawamura, Hiroshi Mashima i Yoshiaki Takeuchi. "World's largest amorphous silicon photovoltaic module". Thin Solid Films 506-507 (maj 2006): 13–16. http://dx.doi.org/10.1016/j.tsf.2005.08.011.
Pełny tekst źródłaFanney, A. Hunter, Mark W. Davis, Brian P. Dougherty, David L. King, William E. Boyson i Jay A. Kratochvil. "Comparison of Photovoltaic Module Performance Measurements". Journal of Solar Energy Engineering 128, nr 2 (5.01.2006): 152–59. http://dx.doi.org/10.1115/1.2192559.
Pełny tekst źródłaRozprawy doktorskie na temat "Silicon photovoltaic module"
Jensen, Mallory Ann. "Root cause defect identification in multicrystalline silicon for improved photovoltaic module reliability". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119344.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 135-145).
To meet climate targets by 2030, manufacturing capacity for photovoltaic (PV) modules must be scaled at 22-25% annual growth rate while maintaining high performance and low selling price. The most suitable material substrate to enable this scale-up is cast multicrystalline silicon (mc-Si) due to its low operating cost and capital requirements compared to other technologies. However, a new form of light-induced degradation was discovered when transitioning mc-Si to the latest high efficiency device architecture. Light- and elevated temperature-induced degradation (LeTID) causes performance to decrease by about 10% (relative) under field-relevant conditions within only four months. In this work, the root cause of LeTID is investigated in three parts: (1) Candidate hypotheses are developed for LeTID; (2) Targeted experiments are carried out toward developing a defect-based description of LeTID; and (3) The basis for a predictive model of LeTID is proposed. Techniques including minority carrier lifetime spectroscopy, synchrotron-based X-ray fluorescence, intentional contamination, and process simulation are employed to probe the defect causing LeTID. The results indicate that LeTID is caused by at least two reactants-hydrogen and one or more reactants that can be modified by high-temperature processing-and that the defect at the point of maximum degradation has recombination characteristics similar to a deep-level donor in silicon. By providing the basis for a predictive model, this work enables both identification of the root cause of LeTID and de-risking of novel solar cell architectures based on mc-Si, allowing assessment of the impact of LeTID on the future of the PV industry. This work also enables development of mitigating strategies for LeTID.
Funding from the National Science Foundation Graduate Research Fellowship Program and grants from the National Science Foundation and the U.S. Department of Energy
by Mallory Ann Jensen.
Ph. D.
Vorasayan, Pongpan. "Spatially resolved measurement of thin film silicon solar modules by laser beam induced current (LBIC) system". Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6652.
Pełny tekst źródłaKotsedi, Lebogang. "Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process". Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1349_1363785866.
Pełny tekst źródłaWhen the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell. A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon. In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity. The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped. A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.
 
Peroutka, Tomáš. "Zjišťování klimatických vlivů na degradaci různých typů fotovoltaických článků". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221066.
Pełny tekst źródłaOwen-Bellini, Michael. "Thermomechanical degradation mechanisms of silicon photovoltaic modules". Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/27619.
Pełny tekst źródłaLewis, Amanda. "Performance of Silicon Heterojunction Cells and Modules in Arctic Applications: Impact of Angle of Incidence, Air Mass, and Spectra on Energy Yield". Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41164.
Pełny tekst źródłaChoi, Hong Kyu. "Analysis and modeling of the long-term performance of amorphous photovoltaic arrays". Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184835.
Pełny tekst źródłaZarmai, Musa Tanko. "Modelling of solder interconnection's performance in photovoltaic modules for reliability prediction". Thesis, University of Wolverhampton, 2016. http://hdl.handle.net/2436/617782.
Pełny tekst źródłaBERARDONE, IRENE. "Fracture Mechanics of Silicon: From durability of photovoltaic modules to the production of thin film solar cells". Doctoral thesis, Politecnico di Torino, 2016. http://hdl.handle.net/11583/2651712.
Pełny tekst źródłaDbeiss, Mouhannad. "Mission Profile-Based Accelerated Ageing Tests of SiC MOSFET and Si IGBT Power Modules in DC/AC Photovoltaic Inverters". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT020/document.
Pełny tekst źródłaIn the case of photovoltaic installations, the DC/AC inverter has the highest failure rate, and the anticipation of its breakdowns is still difficult, while few studies have been done on the reliability of this type of inverter. The aim of this PhD is to propose tools and methods to study the ageing of power modules in this type of application, by focusing on ageing phenomena related to thermo-mechanical aspects. As a general rule, the accelerated ageing of power modules is carried out under aggravated conditions of current (Active Cycling) or temperature (Passive Cycling) in order to accelerate the ageing process. Unfortunately, when applying this type of accelerated ageing tests, some failure mechanisms that do not occur in the real application could be observed, while inversely, other mechanisms that usually occur could not be recreated. The first part of the PhD focuses on the implementation of an accelerated ageing method of the semiconductor devices inside photovoltaic inverters. This is accomplished by analyzing the mission profiles of the inverter’s output current and ambient temperature, extracted over several years from photovoltaic power plants located in the south of France. These profiles are used to study photovoltaic current dynamics, and are introduced into numerical models to estimate losses and junction temperature variations of semiconductors used in inverters, using the cycle counting algorithm “Rainflow”. This method is then performed in two experimental test benches. In the first one, the devices under test are IGBT modules, where the accelerated ageing profile designed is implemented using the opposition method. Moreover, an in-situ setup for monitoring ageing indicators (thermal impedance and dynamic resistance) is also proposed and evaluated. The second bench is devoted to study the ageing of SiC MOSFET power modules. The accelerated ageing test is carried out under the same conditions as for the IGBT modules with more monitored electrical indicators, but this time by disconnecting the semiconductor devices from the inverter. The results obtained allowed to determine several potential ageing indicators of IGBTs and SiC MOSFETs used in a photovoltaic inverter
Książki na temat "Silicon photovoltaic module"
P, Shea Stephen, i National Renewable Energy Laboratory (U.S.), red. Large-scale PV module manufacturing using ultra-thin polycrystalline silicon solar cells: Annual subcontract report, 1 April 2002-30 September 2003. Wyd. 2. Golden, Colo: National Renewable Energy Laboratory, 2004.
Znajdź pełny tekst źródłaOssenbrink, H. Qualification test procedures for crystalline silicon photovoltaic modules. Luxembourg: Commission of the European Communities, 1992.
Znajdź pełny tekst źródłaGuha, S. High-efficiency amorphous silicon and nanocrystalline silicon-based solar cells and modules: Final technical progress report, 30 January 2006 - 29 January 2008. Golden, Colo: National Renewable Energy Laboratory, 2008.
Znajdź pełny tekst źródłaHacke, P. Characterization of multicrystalline silicon modules with system bias voltage applied in damp heat. Golden, CO]: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaNational Renewable Energy Laboratory (U.S.) i IEEE Photovoltaic Specialists Conference (33rd : 2008 : San Diego, Calif.), red. Performance test of amorphous silicon modules in different climates - year four: Progress in understanding exposure history stabilization effects : preprint. Golden, Colo: National Renewable Energy Laboratory, 2008.
Znajdź pełny tekst źródłaLife cycle design of amorphous silicon photovoltaic modules: Project summary. Cincinnati, OH: U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 1997.
Znajdź pełny tekst źródłaLife cycle design of amorphous silicon photovoltaic modules: Project summary. Cincinnati, OH: U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 1997.
Znajdź pełny tekst źródłaOssenbrink, H., i E. Rossi. European Solar Test Installation (ESTI): Qulification Test Procedures for Crystalline Silicon Photovoltaic Modules. European Communities / Union (EUR-OP/OOPEC/OPOCE), 1992.
Znajdź pełny tekst źródłaCzęści książek na temat "Silicon photovoltaic module"
Husain, Dilawar, Kirti Tewari, Manish Sharma, Akbar Ahmad i Ravi Prakash. "Ecological Footprint of Multi-silicon Photovoltaic Module Recycling". W Environmental Footprints of Recycled Products, 65–82. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8426-5_3.
Pełny tekst źródłaMeena, Roopmati, Manish Kumar i Rajesh Gupta. "Reliability and Degradation Analysis of Crystalline Silicon Photovoltaic Module". W Solar Energy: Advancements and Challenges, 125–44. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003373902-8.
Pełny tekst źródłaSuhir, Ephraim, Dongkai Shangguan i Laurent Bechou. "Thermal Stresses in a Tri-Material Assembly with Application to Silicon-Based Photovoltaic Module (PVM)". W Encyclopedia of Thermal Stresses, 5309–17. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_994.
Pełny tekst źródłaTobías, Ignacio, Carlos del Cañizo i Jesús Alonso. "Crystalline Silicon Solar Cells and Modules". W Handbook of Photovoltaic Science and Engineering, 265–313. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470974704.ch7.
Pełny tekst źródłaTobías, Ignacio, Carlos del Cañizo i Jesús Alonso. "Crystalline Silicon Solar Cells and Modules". W Handbook of Photovoltaic Science and Engineering, 255–306. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470014008.ch7.
Pełny tekst źródłaJoshi, J. C., i P. K. Konar. "Outdoor Evaluation of Amorphous Silicon Solar Cell Modules". W Tenth E.C. Photovoltaic Solar Energy Conference, 399–402. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_103.
Pełny tekst źródłaJuergens, W., R. Plättner, H. Kausche, W. Peters i W. Stetter. "Economical Patterning of Series Connected a-Silicon Modules". W Seventh E.C. Photovoltaic Solar Energy Conference, 494–503. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_88.
Pełny tekst źródłaDas, Jani. "Heat Effect on Silicon PV Modules". W The Effects of Dust and Heat on Photovoltaic Modules: Impacts and Solutions, 235–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84635-0_9.
Pełny tekst źródłaPrado, Pedro F. A., Jorge A. S. Tenório i Denise C. R. Espinosa. "Alternative Method for Materials Separation from Crystalline Silicon Photovoltaic Modules". W The Minerals, Metals & Materials Series, 277–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52192-3_27.
Pełny tekst źródłaBrickman, L. A. "A Unified Thick/Thin-Film Optical Model for Silicon Solar Cells and Modules". W Seventh E.C. Photovoltaic Solar Energy Conference, 1050–54. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_188.
Pełny tekst źródłaStreszczenia konferencji na temat "Silicon photovoltaic module"
Jester, Theresa L. "Photovoltaic Cz silicon module improvements". W National center for photovoltaics (NCPV) 15th program review meeting. AIP, 1999. http://dx.doi.org/10.1063/1.58011.
Pełny tekst źródłaMayon, Yahuitl Osorio, Matthew Stocks, Katherine Booker, Christopher Jones i Andrew Blakers. "GaAs/Silicon Tandem Micro-Concentrator Module". W 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300937.
Pełny tekst źródłaJennings, Christina. "Thin film silicon photovoltaic module performance assessment". W AIP Conference Proceedings Volume 157. AIP, 1987. http://dx.doi.org/10.1063/1.36514.
Pełny tekst źródłaFoti, Marina, Marco Galiazzo, Lorenzo Cerasti, Enrico Sovernigo, Cosimo Gerardi, Alfredo Guglielmino, Grazia Litrico i in. "Silicon Heterojunction Solar Module using Shingle interconnection". W 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE, 2021. http://dx.doi.org/10.1109/pvsc43889.2021.9518670.
Pełny tekst źródłaTjengdrawira, C., M. W. P. E. Lamers, I. J. Bennett i P. C. de Jong. "World first 17% efficient multi-crystalline silicon module". W 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5616769.
Pełny tekst źródłaLevrat, J., K. Thomas, A. Faes, J. Champliaud, C. Allebe, N. Badel, L. Barraud i in. "Metal-free crystalline silicon solar cells in module". W 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7355877.
Pełny tekst źródłaZhao, J. H., A. Wang, E. Abbaspour-Sani, F. Yun, M. A. Green i D. L. King. "22.3% efficient silicon solar cell module". W Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996. IEEE, 1996. http://dx.doi.org/10.1109/pvsc.1996.564347.
Pełny tekst źródłaJester, Theresa. "Manufacturing Improvements in CZ Silicon Module Production". W 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. IEEE, 2006. http://dx.doi.org/10.1109/wcpec.2006.279912.
Pełny tekst źródłaWang, Teng-Yu, Jui-Chung Hsiao i Chen-Hsun Du. "Recycling of materials from silicon base solar cell module". W 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6318071.
Pełny tekst źródłaFanney, A. Hunter, Mark W. Davis, Brian P. Dougherty, David L. King, William E. Boyson i Jay A. Kratochvil. "Comparison of Photovoltaic Module Performance Measurements". W ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76086.
Pełny tekst źródłaRaporty organizacyjne na temat "Silicon photovoltaic module"
Jester, T. L. Photovoltaic Cz Silicon Module Improvements. Office of Scientific and Technical Information (OSTI), wrzesień 1998. http://dx.doi.org/10.2172/1323.
Pełny tekst źródłaGee, J. M. High-efficiency one-sun photovoltaic module demonstration using solar-grade CZ silicon. Final report. Office of Scientific and Technical Information (OSTI), październik 1996. http://dx.doi.org/10.2172/399682.
Pełny tekst źródłaJester, T. L. Photovoltaic Cz Silicon Module Improvements; Final Subcontract Report, 9 November 1995 - 8 November 1998. Office of Scientific and Technical Information (OSTI), czerwiec 1999. http://dx.doi.org/10.2172/9801.
Pełny tekst źródłaKing, R. R., K. W. Mitchell i T. L. Jester. Photovoltaic Cz silicon module improvements. Annual technical progress report, November 9, 1995--November 8, 1996. Office of Scientific and Technical Information (OSTI), luty 1998. http://dx.doi.org/10.2172/572747.
Pełny tekst źródłaWohlgemuth, J. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, January 1--June 30, 1995. Office of Scientific and Technical Information (OSTI), luty 1996. http://dx.doi.org/10.2172/195684.
Pełny tekst źródłaWohlgemuth, J. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual technical report, 1 January 1996--30 June 1996. Office of Scientific and Technical Information (OSTI), styczeń 1997. http://dx.doi.org/10.2172/453488.
Pełny tekst źródłaWoodhouse, Michael A., Brittany Smith, Ashwin Ramdas i Robert M. Margolis. Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map. Office of Scientific and Technical Information (OSTI), luty 2019. http://dx.doi.org/10.2172/1495719.
Pełny tekst źródłaWohlgemuth, J. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, January 1, 1995--December 31, 1995. Office of Scientific and Technical Information (OSTI), czerwiec 1996. http://dx.doi.org/10.2172/262999.
Pełny tekst źródłaWohlgemuth, J. Cast Polycrystalline Silicon Photovoltaic Module Manufacturing Technology Improvements: Semiannual Subcontract Report, 8 December 1993 - 30 June 1994. Office of Scientific and Technical Information (OSTI), marzec 1995. http://dx.doi.org/10.2172/41346.
Pełny tekst źródłaWohlgemuth, J. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, 1 January 1996--31 December 1996. Office of Scientific and Technical Information (OSTI), październik 1997. http://dx.doi.org/10.2172/541852.
Pełny tekst źródła