Gotowa bibliografia na temat „Silicon photonic sensors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Silicon photonic sensors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Silicon photonic sensors"
Mohebbi, M. "Refractive index sensing of gases based on a one-dimensional photonic crystal nanocavity". Journal of Sensors and Sensor Systems 4, nr 1 (4.06.2015): 209–15. http://dx.doi.org/10.5194/jsss-4-209-2015.
Pełny tekst źródłaPuumala, Lauren S., Samantha M. Grist, Jennifer M. Morales, Justin R. Bickford, Lukas Chrostowski, Sudip Shekhar i Karen C. Cheung. "Biofunctionalization of Multiplexed Silicon Photonic Biosensors". Biosensors 13, nr 1 (29.12.2022): 53. http://dx.doi.org/10.3390/bios13010053.
Pełny tekst źródłaSidorov A. I. i Vidimina Yu. O. "Temperature sensor on base of pne-dimensional photonic crystal with defect". Optics and Spectroscopy 130, nr 9 (2022): 1185. http://dx.doi.org/10.21883/eos.2022.09.54840.3355-22.
Pełny tekst źródłaDhavamani, Vigneshwar, Srijani Chakraborty, S. Ramya i Somesh Nandi. "Design and Simulation of Waveguide Bragg Grating based Temperature Sensor in COMSOL". Journal of Physics: Conference Series 2161, nr 1 (1.01.2022): 012047. http://dx.doi.org/10.1088/1742-6596/2161/1/012047.
Pełny tekst źródłaKazanskiy, Nikolay L., Svetlana N. Khonina i Muhammad A. Butt. "Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review". Photonics 9, nr 5 (11.05.2022): 331. http://dx.doi.org/10.3390/photonics9050331.
Pełny tekst źródłaDensmore, A., D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid i P. Cheben. "Sensitive Label-Free Biomolecular Detection Using Thin Silicon Waveguides". Advances in Optical Technologies 2008 (16.06.2008): 1–9. http://dx.doi.org/10.1155/2008/725967.
Pełny tekst źródłaNAGATSUMA, TADAO, KATSUYUKI MACHIDA, HIROMU ISHII, NABIL SAHRI, MITSURU SHINAGAWA, HAKARU KYURAGI i JUNZO YAMADA. "INNOVATIVE INTEGRATION BASED ON SILICON-CORE TECHNOLOGIES FOR SENSOR AND COMMUNICATIONS APPLICATIONS". International Journal of High Speed Electronics and Systems 10, nr 01 (marzec 2000): 205–15. http://dx.doi.org/10.1142/s0129156400000258.
Pełny tekst źródłaKumar, Abhishek, Manoj Gupta, Prakash Pitchappa, Yi Ji Tan, Nan Wang i Ranjan Singh. "Topological sensor on a silicon chip". Applied Physics Letters 121, nr 1 (4.07.2022): 011101. http://dx.doi.org/10.1063/5.0097129.
Pełny tekst źródłaGilewski, Marian. "The ripple-curry amplifier in photonic applications". Photonics Letters of Poland 14, nr 4 (31.12.2022): 86–88. http://dx.doi.org/10.4302/plp.v14i4.1187.
Pełny tekst źródłaChristofi, Aristi, Georgia Margariti, Alexandros Salapatas, George Papageorgiou, Panagiotis Zervas, Pythagoras Karampiperis, Antonis Koukourikos i in. "Determining the Nutrient Content of Hydroponically-Cultivated Microgreens with Immersible Silicon Photonic Sensors: A Preliminary Feasibility Study". Sensors 23, nr 13 (26.06.2023): 5937. http://dx.doi.org/10.3390/s23135937.
Pełny tekst źródłaRozprawy doktorskie na temat "Silicon photonic sensors"
Noh, Jong Wook. "In-Plane, All-Photonic Transduction Method for Silicon Photonic Microcantilever Array Sensors". BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/1965.
Pełny tekst źródłaYang, Wenjian. "Microwave Photonics and Sensing based on Silicon Photonics". Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23482.
Pełny tekst źródłaVargas, German R. "Silicon Photonic Device for Wavelength Sensing and Monitoring". FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/734.
Pełny tekst źródłaKoshkinbayeva, Ainur. "New photonic architectures for mid-infrared gaz sensors integrated on silicon". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI019.
Pełny tekst źródłaThe work focuses on optical multiplexers operating in mid-IR for broadband source in gas sensing application. Two configurations were studies – arrayed waveguide grating (AWG) and planar concave grating (PCG). First, principle of operation was understood in order to develop analytical solution for output field using Gaussian approximation of the field and Fourier Optics. Then, semi-analytical simulation tool of the spectral response for both multiplexer configurations was developed in MATLAB. Normal distribution of phase errors was introduced to semi-analytical AWG model, which allowed us to study the correlation between standard deviation of phase errors and the level of crosstalk of AWG spectral response. AWG at 5.65 µm was fabricated based on SiGe/Si technology using the MATLAB tool for design parameters calculation and P.Labeye’s tool for AWG geometry calculation. Devices with slightly varying parameters were characterized: AWG1 with 4.6 µm waveguides and 9µm MMI; AWG2 with 4.6 µm waveguides and 11µm MMI; AWG3 with 4.8 µm waveguides and 9µm MMI. Measurements of devices on chip 36 (center of the wafer) and chip 32 (side of the wafer) were performed and analyzed. Temperature measurements of AWG2 and AWG3 (chip 32 and chip 36) at points five temperature points showed linear dependence of spectral shift with the temperature which has a good correlation with simulation predictions
Caroselli, Raffaele. "Development of high sensitivity photonic sensing structures based on porous silicon substrates". Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/107318.
Pełny tekst źródłaHealth and well-being have always been the center of attention of many research institutions and companies around the world. This led the technology to develop in the chemical, biological, medical and clinical fields with the aim to provide a better protection to the human being. As a consequence, a competition is born between the time necessary to the disease to progress and the time necessary to man to treat such disease. In order to win this competition, it is necessary to act with anticipation, when disease is not too developed yet. This is possible by performing an early-detection. The achievement of this goal paves the way for the development of optical biosensing devices able to detect the presence of certain molecules at extremely low concentrations. Among them, photonic integrated structures are finding a great success due to their considerably high sensitivity. However, the sensing mechanism of these structures is based on the interaction between the evanescent wave, propagating along the structure surface, and the target analyte to detect. In this way, not all the field propagating in the photonic structure is used for sensing purposes, but rather only a small amount of it. This represents a crucial limitation of the integrated photonics based sensors. The aim of this PhD Thesis is to overcome this limitation and to develop more sensitive photonic sensing structures able to detect the lowest concentration possible. To this aim, we focused on the study of porous silicon as platform for the development of optical structures with extremely high sensitivities thanks to the fact that the sensing interaction takes place directly inside the structure itself, allowing to exploit all the field propagating in the structure.
La salut i el benestar sempre han sigut el centre d'atenció de moltes institucions de recerca i empreses de tot el món. Açò va portar a la tecnologia a desenvolupar-se en els camps químic, biològic, mèdic i clínic amb l'objectiu de proporcionar una millor protecció a l'ésser humà. Com a conseqüència, ha sorgit una competició entre el temps necessari per que la malaltia progresse i el temps necessari per que l'home tracte aquesta malaltia. Per a guanyar aquesta competició, és necessari actuar amb anticipació, quan la malaltia encara no està massa desenvolupada. Açò és possible realitzant una detecció precoç de la malaltia. L'assoliment d'aquest objectiu facilita el camí per al desenvolupament de dispositius òptics de biosensat capaços de detectar la presència de certes molècules en concentracions extremadament baixes. Entre ells, les estructures fotòniques integrades estan tenint un gran èxit a causa de la seua considerablement alta sensibilitat. No obstant açò, el mecanisme de detecció d'aquestes estructures es basa en la interacció entre l'ona evanescent, que es propaga al llarg de la superfície de l'estructura, i l'analit a detectar. D'aquesta forma, no tot el camp que es propaga en l'estructura fotònica s'usa amb finalitats de detecció, sinó solament una xicoteta quantitat d'aquest. Açò representa una limitació crucial dels sensors basats en fotònica integrada. L'objectiu d'aquesta tesi doctoral és superar aquesta limitació i desenvolupar estructures fotòniques de sensat més sensibles que siguen capaces de detectar les concentracions més baixes possibles. Amb aquest objectiu, ens centrem en l'estudi del silici porós com a plataforma per al desenvolupament d'estructures òptiques amb sensibilitats extremadament altes gràcies a que la interacció de sensat es realitza directament dins de la pròpia estructura, el que permet explotar tot el camp que es propaga.
Caroselli, R. (2018). Development of high sensitivity photonic sensing structures based on porous silicon substrates [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107318
TESIS
Liu, Qiankun. "SiGe photonic integrated circuits for mid-infrared sensing applications". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS166/document.
Pełny tekst źródłaMid-infrared (mid-IR) spectroscopy is a nearly universal way to identify chemical and biological substances, as most of the molecules have their vibrational and rotational resonances in the mid-IR wavelength range. Commercially available mid-IR systems are based on bulky and expensive equipment, while lots of efforts are now devoted to the reduction of their size down to chip-scale dimensions. The use of silicon photonics for the demonstration of mid-IR photonic circuits will benefit from reliable and high-volume fabrication to offer high performance, low cost, compact, lightweight and power consumption photonic circuits, which is particularly interesting for mid-IR spectroscopic sensing systems that need to be portable and low cost. Among the different materials available in silicon photonics, Germanium (Ge) and Silicon-Germanium (SiGe) alloys with a high Ge concentration are particularly interesting because of the wide transparency window of Ge up to 15 µm. In this context, the objective of this thesis is to investigate a new Ge-rich graded SiGe platform for mid-IR photonic circuits. Such new plateform was expected to benefit from a wide transparency wavelength range and a high versatility in terms of optical engineering (effective index, dispersion, …). During this thesis, different waveguides platforms based on different graded profiles have been investigated. First it has been shown that waveguides with low optical losses of less than 3 dB/cm can be obtained in a wide wavelength range, from 5.5 to 8.5 µm. A proof of concept of sensing based on the absorption of the evanescent component of the optical mode has then been demonstrated. Finally, elementary building blocs have been investigated. The first Bragg mirror-based Fabry Perot cavities and racetrack resonators have been demonstrated around 8 µm wavelength. A broadband dual-polarization MIR integrated spatial heterodyne Fourier-Transform spectrometer has also been obtained. All these results rely on material and device design, clean-room fabrication and experimental characterization. This work was done in the Framework of EU project INsPIRE in collaboration with Pr. Giovanni Isella from Politecnico Di Milano
Chen, Li. "Hybrid Silicon and Lithium Niobate Integrated Photonics". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429660021.
Pełny tekst źródłaSchröder, Tim. "Integrated photonic systems for single photon generation and quantum applications". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16723.
Pełny tekst źródłaThe presented thesis covers the development and investigation of novel integrated single photon (SP) sources and their application for quantum information schemes. SP generation was based on single defect centers in diamond nanocrystals. Such defect centers offer unique optical properties as they are room temperature stable, non-blinking, and do not photo-bleach over time. The fluorescent nanocrystals are mechanically stable, their size down to 20nm enabled the development of novel nano-manipulation pick-and-place techniques, e.g., with an atomic force microscope, for integration into photonic structures. Two different approaches were pursued to realize novel SP sources. First, fluorescent diamond nanocrystals were integrated into nano- and micrometer scaled fiber devices and resonators, making them ultra-stable and maintenance free. Secondly, a solid immersion microscope (SIM) was developed. Its solid immersion lens acts as a dielectric antenna for the emission of defect centers, enabling the highest photon rates of up to 2.4Mcts/s and collection efficiencies of up to 4.2% from nitrogen vacancy defect centers achieved to date. Implementation of the SIM at cryogenic temperatures enabled novel applications and fundamental investigations due to increased photon rates. The determination of the spectral diffusion time of a single nitrogen vacancy defect center (2.2µs) gave new insights about the mechanisms causing spectral diffusion. Spectral diffusion is a limiting property for quantum information applications. The table-top SIM was integrated into a compact mobile SP system with dimension of only 7x19x23cm^3 while still maintaining record-high stable SP rates. This makes it interesting for various SP applications. First, a quantum key distribution scheme based on the BB84 protocol was implemented, for the first time also with silicon vacancy defect centers. Secondly, a conceptually novel scheme for the generation of infrared SPs was introduced and realized.
Shnaiderman, Rami [Verfasser], Vasilis [Akademischer Betreuer] Ntziachristos, Vasilis [Gutachter] Ntziachristos i Bernhard [Gutachter] Wolfrum. "Silicon photonics sensors of ultrasound for optoacoustic imaging / Rami Shnaiderman ; Gutachter: Vasilis Ntziachristos, Bernhard Wolfrum ; Betreuer: Vasilis Ntziachristos". München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/1238374034/34.
Pełny tekst źródłaFrem, Leonardo A. "Hall Effect Modeling in FEM Simulators and Comparison to Experimental Results in Silicon and Printed Sensors". DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1618.
Pełny tekst źródłaKsiążki na temat "Silicon photonic sensors"
Kallepalli, Lakshmi Narayana Deepak, red. Applications of Silicon Photonics in Sensors and Waveguides. InTech, 2018. http://dx.doi.org/10.5772/intechopen.71590.
Pełny tekst źródłaHigh Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Sensors. Elsevier Science & Technology, 2014.
Znajdź pełny tekst źródłaDurini, Daniel. High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Sensors. Elsevier Science & Technology, 2017.
Znajdź pełny tekst źródłaDurini, Daniel. High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Sensors. Elsevier Science & Technology, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "Silicon photonic sensors"
Hameed, Mohamed Farhat O., A. Samy Saadeldin, Essam M. A. Elkaramany i S. S. A. Obayya. "Introduction to Silicon Photonics". W Computational Photonic Sensors, 73–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76556-3_4.
Pełny tekst źródłaHameed, Mohamed Farhat O., A. Samy Saadeldin, Essam M. A. Elkaramany i S. S. A. Obayya. "Silicon Nanowires for DNA Sensing". W Computational Photonic Sensors, 321–42. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76556-3_13.
Pełny tekst źródłaWerquin, S., J. W. Hoste, D. Martens, T. Claes i P. Bienstman. "Silicon Ring Resonator-Based Biochips". W Computational Photonic Sensors, 385–421. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76556-3_15.
Pełny tekst źródłaJanz, S., A. Densmore, D. X. Xu, P. Waldron, J. Lapointe, J. H. Schmid, T. Mischki i in. "Silicon Photonic Wire Waveguide Sensors". W Integrated Analytical Systems, 229–64. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-98063-8_9.
Pełny tekst źródłaAhmed, Abdelrahman H., Alexander Rylyakov i Sudip Shekhar. "Coherent Silicon Photonic Links". W Analog Circuits for Machine Learning, Current/Voltage/Temperature Sensors, and High-speed Communication, 331–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91741-8_18.
Pełny tekst źródłaPark, Bryan, i Olav Solgaard. "Monolithic Silicon Photonic Crystal Fiber Tip Sensors". W Springer Series in Surface Sciences, 69–90. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06998-2_4.
Pełny tekst źródłaZanetto, Francesco. "Low-Noise Mixed-Signal Electronics for Closed-Loop Control of Complex Photonic Circuits". W Special Topics in Information Technology, 55–64. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85918-3_5.
Pełny tekst źródłaRasras, Mahmoud S., i Osama Al Mrayat. "Lab-on-Chip Silicon Photonic Sensor". W The IoT Physical Layer, 83–102. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93100-5_6.
Pełny tekst źródłaRoy, Sandip Kumar, i Preeta Sharan. "Photonic Crystal Based Sensor for DNA Analysis of Cancer Detection". W Silicon Photonics & High Performance Computing, 79–85. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7656-5_9.
Pełny tekst źródłaHnatiw, A. J. P., R. I. MacDonald, P. S. Apté i W. D. MacDonald. "A Silica Based Integrated Optic Microwave Power Sensor". W Applications of Photonic Technology 2, 831–36. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_126.
Pełny tekst źródłaStreszczenia konferencji na temat "Silicon photonic sensors"
Agarwal, Anuradha M. "Building a platform for mid-infrared photonic sensors". W Silicon Photonics XVIII, redaktorzy Graham T. Reed i Andrew P. Knights. SPIE, 2023. http://dx.doi.org/10.1117/12.2653288.
Pełny tekst źródłaSreenivasulu, T., V. R. Kolli, K. Anusree, T. R. Yadunath, T. Badrinarayana, T. Srinivas, Gopalkrishna Hegde i S. Mohan. "Photonic crystal based force sensor on silicon microcantilever". W 2015 IEEE Sensors. IEEE, 2015. http://dx.doi.org/10.1109/icsens.2015.7370225.
Pełny tekst źródłaBarea, Luis A. M., Mario C. M. M. Souza, André L. Moras, Álvaro R. G. Catellan, Giuseppe A. Cirino, Antônio A. G. Von Zuben, Newton C. Frateschi i Jose W. M. Bassani. "Photonic molecules for application in silicon-on-insulator optical sensors". W Silicon Photonics XIII, redaktorzy Graham T. Reed i Andrew P. Knights. SPIE, 2018. http://dx.doi.org/10.1117/12.2287844.
Pełny tekst źródłaChrostowski, Lukas, Samantha Grist, Jonas Flueckiger, Wei Shi, Xu Wang, Eric Ouellet, Han Yun i in. "Silicon photonic resonator sensors and devices". W SPIE LASE, redaktorzy Alexis V. Kudryashov, Alan H. Paxton i Vladimir S. Ilchenko. SPIE, 2012. http://dx.doi.org/10.1117/12.916860.
Pełny tekst źródłaPancheri, L., D. Stoppa, N. Massari, M. Malfatti, C. Piemonte i G. F. Dalla Betta. "Current assisted photonic mixing devices fabricated on high resistivity silicon". W 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716606.
Pełny tekst źródłaRanacher, Christian, Cristina Consani, Ursula Hedenig, Thomas Grille, Ventsislav Lavchiev i Bernhard Jakoby. "A photonic silicon waveguide gas sensor using evanescent-wave absorption". W 2016 IEEE Sensors. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808688.
Pełny tekst źródłaDong, B., H. Cai, M. Tang, Y. D. Gu, Z. C. Yang, Y. F. Jin, Y. L. Hao, D. L. Kwong i A. Q. Liu. "NEMS integrated photonic system using nano-silicon-photonic circuits". W TRANSDUCERS 2015 - 2015 18th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2015. http://dx.doi.org/10.1109/transducers.2015.7181093.
Pełny tekst źródłaChakravarty, Swapnajit, Hai Yan, Yi Zou i Ray T. Chen. "Mid-infrared silicon photonic devices and sensors". W 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM). IEEE, 2017. http://dx.doi.org/10.1109/phosst.2017.8012711.
Pełny tekst źródłaMarin, Y., A. Celik, S. Faralli, L. Adelmini, C. Kopp, F. Di Pasquale i C. J. Oton. "Silicon Photonic Chip for Dynamic Wavelength Division Multiplexed FBG Sensors Interrogation". W Optical Fiber Sensors. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/ofs.2018.the45.
Pełny tekst źródłaPacholski, C. "Detection of biomolecules with 1D photonic crystals based on porous silicon". W 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6985146.
Pełny tekst źródła