Gotowa bibliografia na temat „Silicon photonic sensors”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Silicon photonic sensors”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Silicon photonic sensors"

1

Mohebbi, M. "Refractive index sensing of gases based on a one-dimensional photonic crystal nanocavity". Journal of Sensors and Sensor Systems 4, nr 1 (4.06.2015): 209–15. http://dx.doi.org/10.5194/jsss-4-209-2015.

Pełny tekst źródła
Streszczenie:
Abstract. Silicon photonic crystal sensors have become very attractive for various optical sensing applications. Using silicon as a material platform provides the ability to fabricate sensors with other photonic devices on a single chip. In this paper, a new optical sensor based on optical resonance in a one-dimensional silicon photonic crystal with an air defect is theoretically studied for refractive index sensing in the infrared wavelength region. The air defect introduces a cavity into the photonic crystal, making it suitable for probing the properties of a gas found within the cavity. This photonic crystal nanocavity is designed to oscillate at a single mode with a high quality factor, allowing for refractive index sensing of gases with a high sensitivity. A method is presented to maximize the sensitivity of the sensor and to obtain a very narrow bandwidth cavity mode for good sensor resolution. We change the thickness of the air layers linearly in the photonic crystals on both sides of the nanocavity and show that a sensitivity of 1200 nm RIU−1 can be achieved. We present a detailed analysis of the sensor and variations of the layer thicknesses, the cavity length, and the number of periodic layers in the photonic crystal are investigated. This optical sensor has a much simpler design and higher sensitivity compared to other photonic crystal sensors reported previously.
Style APA, Harvard, Vancouver, ISO itp.
2

Puumala, Lauren S., Samantha M. Grist, Jennifer M. Morales, Justin R. Bickford, Lukas Chrostowski, Sudip Shekhar i Karen C. Cheung. "Biofunctionalization of Multiplexed Silicon Photonic Biosensors". Biosensors 13, nr 1 (29.12.2022): 53. http://dx.doi.org/10.3390/bios13010053.

Pełny tekst źródła
Streszczenie:
Silicon photonic (SiP) sensors offer a promising platform for robust and low-cost decentralized diagnostics due to their high scalability, low limit of detection, and ability to integrate multiple sensors for multiplexed analyte detection. Their CMOS-compatible fabrication enables chip-scale miniaturization, high scalability, and low-cost mass production. Sensitive, specific detection with silicon photonic sensors is afforded through biofunctionalization of the sensor surface; consequently, this functionalization chemistry is inextricably linked to sensor performance. In this review, we first highlight the biofunctionalization needs for SiP biosensors, including sensitivity, specificity, cost, shelf-stability, and replicability and establish a set of performance criteria. We then benchmark biofunctionalization strategies for SiP biosensors against these criteria, organizing the review around three key aspects: bioreceptor selection, immobilization strategies, and patterning techniques. First, we evaluate bioreceptors, including antibodies, aptamers, nucleic acid probes, molecularly imprinted polymers, peptides, glycans, and lectins. We then compare adsorption, bioaffinity, and covalent chemistries for immobilizing bioreceptors on SiP surfaces. Finally, we compare biopatterning techniques for spatially controlling and multiplexing the biofunctionalization of SiP sensors, including microcontact printing, pin- and pipette-based spotting, microfluidic patterning in channels, inkjet printing, and microfluidic probes.
Style APA, Harvard, Vancouver, ISO itp.
3

Sidorov A. I. i Vidimina Yu. O. "Temperature sensor on base of pne-dimensional photonic crystal with defect". Optics and Spectroscopy 130, nr 9 (2022): 1185. http://dx.doi.org/10.21883/eos.2022.09.54840.3355-22.

Pełny tekst źródła
Streszczenie:
The results of computer simulation of optical properties of one-dimensional (1D) photonic crystal with defect, based on semiconductor-dielectric layers are presented. As semiconductor silicon and germanium were used. The influence of temperature on spectral position of defect transmission band was studied. It was shown that for photonic crystal based on silicon temperature sensitivity is 0.07 nm/K and 2.6 dB/K. For photonic crystal based on germanium --- 0.37 nm/K and 7.8 dB/K. This makes such photonic crystals promising for use in temperature sensors as sensitive element. Keywords: temperature sensor, photonic crystal, photonic bandgap, transfer matrix.
Style APA, Harvard, Vancouver, ISO itp.
4

Dhavamani, Vigneshwar, Srijani Chakraborty, S. Ramya i Somesh Nandi. "Design and Simulation of Waveguide Bragg Grating based Temperature Sensor in COMSOL". Journal of Physics: Conference Series 2161, nr 1 (1.01.2022): 012047. http://dx.doi.org/10.1088/1742-6596/2161/1/012047.

Pełny tekst źródła
Streszczenie:
Abstract With the advancements in the domain of photonics and optical sensors, Fibre Bragg Grating (FBG) sensors, owing to their increased advantages, have been researched widely and have proved to be useful in sensing applications. Moreover, the advent of Photonic Integrated Circuits (PICs) demands the incorporation of optical sensing in waveguides, which can be integrated on silicon photonic chips. In this paper, the design of a sub-micron range Waveguide Bragg Grating (WBG) based temperature sensor with high peak reflectivity and thermal sensitivity is proposed. The flexibility of COMSOL Multiphysics software is explored to simulate the sensor and the results are verified with the analytical values calculated using MATLAB. The simulation is carried out for the proposed design having 16000 gratings and a corresponding peak reflectivity of 0.953 is obtained. A thermal sensitivity of 80 pm/K is achieved, which is approximately eight times better than that of FBG based sensor.
Style APA, Harvard, Vancouver, ISO itp.
5

Kazanskiy, Nikolay L., Svetlana N. Khonina i Muhammad A. Butt. "Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review". Photonics 9, nr 5 (11.05.2022): 331. http://dx.doi.org/10.3390/photonics9050331.

Pełny tekst źródła
Streszczenie:
Exploration and implementation of silicon (Si) photonics has surged in recent years since both photonic component performance and photonic integration complexity have considerably improved. It supports a wide range of datacom and telecom applications, as well as sensors, including light detection and ranging, gyroscopes, biosensors, and spectrometers. The advantages of low-loss Si WGs with compact size and excellent uniformity, resulting from the high quality and maturity of the Si complementary metal oxide semiconductor (CMOS) environment, are major drivers for using Si in photonics. Moreover, it has a high refractive index and a reasonably large mid-infrared (MIR) transparency window, up to roughly 7 μm wavelength, making it beneficial as a passive mid-IR optical material. Several gases and compounds with high absorption properties in the MIR spectral region are of prodigious curiosity for industrial, medicinal, and environmental applications. In comparison to current bulky systems, the implementation of Si photonics devices in this wavelength range might allow inexpensive and small optical sensing devices with greater sensitivity (S), power usage, and mobility. In this review, recent advances in Si integrated photonic sensors working in both near-infrared (NIR) and MIR wavelength ranges are discussed. We believe that this paper will be valuable for the scientific community working on Si photonic sensing devices.
Style APA, Harvard, Vancouver, ISO itp.
6

Densmore, A., D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid i P. Cheben. "Sensitive Label-Free Biomolecular Detection Using Thin Silicon Waveguides". Advances in Optical Technologies 2008 (16.06.2008): 1–9. http://dx.doi.org/10.1155/2008/725967.

Pełny tekst źródła
Streszczenie:
We review our work developing optical waveguide-based evanescent field sensors for the label-free, specific detection of biological molecules. Using high-index-contrast silicon photonic wire waveguides of submicrometer dimension, we demonstrate ultracompact and highly sensitive molecular sensors compatible with commercial spotting apparatus and microfluidic-based analyte delivery systems. We show that silicon photonic wire waveguides support optical modes with strong evanescent field at the waveguide surface, leading to strong interaction with surface bound molecules for sensitive response. Furthermore, we present new sensor geometries benefiting from the very small bend radii achievable with these high-index-contrast waveguides to extend the sensing path length, while maintaining compact size. We experimentally demonstrate the sensor performance by monitoring the adsorption of protein molecules on the waveguide surface and by tracking small refractive index changes of bulk solutions.
Style APA, Harvard, Vancouver, ISO itp.
7

NAGATSUMA, TADAO, KATSUYUKI MACHIDA, HIROMU ISHII, NABIL SAHRI, MITSURU SHINAGAWA, HAKARU KYURAGI i JUNZO YAMADA. "INNOVATIVE INTEGRATION BASED ON SILICON-CORE TECHNOLOGIES FOR SENSOR AND COMMUNICATIONS APPLICATIONS". International Journal of High Speed Electronics and Systems 10, nr 01 (marzec 2000): 205–15. http://dx.doi.org/10.1142/s0129156400000258.

Pełny tekst źródła
Streszczenie:
This paper describes an innovative system integration scheme wherein heterogeneous materials and devices, including photonic devices as well as electronics, are organically integrated on silicon-core circuitry to achieve better performance, higher functionality and lower cost. First, some general integration technology trends in semiconductor electronics are described. Then, after a discussion of new heterogeneous integration schemes based on silicon-core technologies, recent attempts and applications are shown such as low power LSIs, sensors and micromachine switches on silicon and milimeter-wave photonics.
Style APA, Harvard, Vancouver, ISO itp.
8

Kumar, Abhishek, Manoj Gupta, Prakash Pitchappa, Yi Ji Tan, Nan Wang i Ranjan Singh. "Topological sensor on a silicon chip". Applied Physics Letters 121, nr 1 (4.07.2022): 011101. http://dx.doi.org/10.1063/5.0097129.

Pełny tekst źródła
Streszczenie:
An ultrasensitive photonic sensor is vital for sensing matter with absolute specificity. High specificity terahertz photonic sensors are essential in many fields, including medical research, clinical diagnosis, security inspection, and probing molecular vibrations in all forms of matter. Widespread photonic sensing technology detects small frequency shifts due to the targeted specimen, thus requiring ultra-high quality ( Q) factor resonance. However, the existing terahertz waveguide resonating structures are prone to defects, possess limited Q-factor, and lack the feature of chip-scale CMOS integration. Here, inspired by the topologically protected edge state of light, we demonstrate a silicon valley photonic crystal based ultrasensitive, robust on-chip terahertz topological insulator sensor that consists of a topological waveguide critically coupled to a topological cavity with an ultra-high quality ( Q) factor of [Formula: see text]. Topologically protected cavity resonance exhibits strong resilience against disorder and multiple sharp bends. Leveraging on the extremely narrow linewidth (2.3 MHz) of topological cavity resonance, the terahertz sensor shows a record-high figure of merit of [Formula: see text]. In addition to the spectral shift, the intensity modulation of cavity resonance offers an additional sensor metric through active tuning of critical coupling in the waveguide-cavity system. We envision that the ultra-high Q photonic terahertz topological sensor could have chip-scale biomedical applications such as differentiation between normal and cancerous tissues by monitoring the water content.
Style APA, Harvard, Vancouver, ISO itp.
9

Gilewski, Marian. "The ripple-curry amplifier in photonic applications". Photonics Letters of Poland 14, nr 4 (31.12.2022): 86–88. http://dx.doi.org/10.4302/plp.v14i4.1187.

Pełny tekst źródła
Streszczenie:
This paper discusses the new design of a amplifier for the miniature MEMS-type spectrometer. The application problem of the new amplifier was the correct conditioning of the sensor's photoelectric pulses. The processed signal was a sequence of pulses that had variable both frequency and amplitude value. Thus, such a broadband amplifier should have the functionality of automatic gain control. This paper describes the concept of the new circuit, develops its detailed application, and then performs validation tests. Measurement results of the new circuit are discussed in the final section of the paper. Full Text: PDF ReferencesC. Ortolani, Flow Cytometry Today. Detectors and Electronics, (Springer 2022). pp. 97-119, CrossRef D. Maes, L. Reis, S. Poelman, E. Vissers, V. Avramovic, M. Zaknoune, G. Roelkens, S. Lemey, E. Peytavit, B. Kuyken, "High-Speed Photodiodes on Silicon Nitride with a Bandwidth beyond 100 GHz", Conference on Lasers and Electro-Optics, Optica Publishing Group, (2022). CrossRef R. Das, Y. Xie, A.P. Knights, "All-Silicon Low Noise Photonic Frontend For LIDAR Applications", 2022 IEEE Photonics Conference (IPC), IEEE Xplore (2022). CrossRef FEMTO Messtechnik GmbH, Variable Gain Photoreceiver - Fast Optical Power Meter Series OE-200, DirectLink M. Nehir, C. Frank, S. Aßmann, E.P. Achterberg, "Improving Optical Measurements: Non-Linearity Compensation of Compact Charge-Coupled Device (CCD) Spectrometers", Sensors 19(12), 2833 (2019). CrossRef F. Thomas,; R. Petzold, C. Becker, U. Werban, "Application of Low-Cost MEMS Spectrometers for Forest Topsoil Properties Prediction", Sensors 21(11), 3927 (2021). CrossRef M. Muhiyudin, D. Hutson, D. Gibson, E. Waddell, S. Song, S. Ahmadzadeh, "Miniaturised Infrared Spectrophotometer for Low Power Consumption Multi-Gas Sensing", Sensors 20(14), 3843 (2020). CrossRef S. Maruyama, T Hizawa, K. Takahashi, K. Sawada, "Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection", Sensors 18(1), 138 (2018). CrossRef S. Merlo, P. Poma, E. Crisà, D. Faralli, M. Soldo, "Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry", Sensors 17(3), 8 (2017). CrossRef M.S. Wei, F. Xing, B. Li, Z. You, "Investigation of Digital Sun Sensor Technology with an N-Shaped Slit Mask", Sensors 11(10), 9764 (2011). CrossRef Z. Yang, T. Albrow-Owen, W. Cai, T. Hasan, "Miniaturization of optical spectrometers", Science 371, 6528 (2021). CrossRef Hamamatsu Photonics K.K. Fingertip size, ultra-compact spectrometer head integrating MEMS and image sensor technologies. DirectLink Microchip Technology Inc, MCP6291/1R/2/3/4/5 1.0 mA 10 MHz Rail-to-Rail Op Amp, CrossRef Microchip Technology Inc. MCP6021/1R/2/3/4 Rail-to-Rail Input/Output 10 MHz Op Amps, CrossRef
Style APA, Harvard, Vancouver, ISO itp.
10

Christofi, Aristi, Georgia Margariti, Alexandros Salapatas, George Papageorgiou, Panagiotis Zervas, Pythagoras Karampiperis, Antonis Koukourikos i in. "Determining the Nutrient Content of Hydroponically-Cultivated Microgreens with Immersible Silicon Photonic Sensors: A Preliminary Feasibility Study". Sensors 23, nr 13 (26.06.2023): 5937. http://dx.doi.org/10.3390/s23135937.

Pełny tekst źródła
Streszczenie:
Microgreens have gained attention for their exceptional culinary characteristics and high nutritional value. The present study focused on a novel approach for investigating the easy extraction of plant samples and the utilization of immersible silicon photonic sensors to determine, on the spot, the nutrient content of microgreens and their optimum time of harvest. For the first time, it was examined how these novel sensors can capture time-shifting spectra caused by the molecules’ dynamic adhesion onto the sensor surface. The experiment involved four types of microgreens (three types of basil and broccoli) grown in a do-it-yourself hydroponic installation. The sensors successfully distinguished between different plant types, showcasing their discriminative capabilities. To determine the optimum harvest time, this study compared the sensor data with results obtained through standard analytical methods. Specifically, the total phenolic content and antioxidant activity of two basil varieties were juxtaposed with the sensor data, and this study concluded that the ideal harvest time for basil microgreens was 14 days after planting. This finding highlights the potential of the immersible silicon photonic sensors for potentially replacing time-consuming analytical techniques. By concentrating on obtaining plant extracts, capturing time-shifting spectra, and assessing sensor reusability, this research paves the way for future advancements in urban farming.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Silicon photonic sensors"

1

Noh, Jong Wook. "In-Plane, All-Photonic Transduction Method for Silicon Photonic Microcantilever Array Sensors". BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/1965.

Pełny tekst źródła
Streszczenie:
We have invented an in-plane all-photonic transduction method for photonic microcantilever arrays that is scalable to large arrays for sensing applications in both bio- and nanotechnology. Our photonic transduction method utilizes a microcantilever forming a single mode rib waveguide and a differential splitter consisting of an asymmetric multimode waveguide and a Y-branch waveguide splitter. The differential splitter's outputs are used to form a differential signal that has a monotonic response to microcantilever deflection. A differential splitter using an amorphous silicon strip-loaded multimode rib waveguide is designed and fabricated to demonstrate the feasibility of the in-plane photonic transduction method. Our initial implementation shows that the sensitivity of the device is 0.135×10^-3 nm^-1 which is comparable to that of other readout methods currently employed for static-deflection based sensors. Through further analysis of the optical characteristics of the differential splitter, a new asymmetric double-step multimode rib waveguide has been devised for the differential splitter. The new differential splitter not only improves sensitivity and reduces size, but also eliminates several fabrication issues. Furthermore, photonic microcantilever arrays are integrated with the differential splitters and a waveguide splitter network in order to demonstrate scalability. We have achieved a measured sensitivity of 0.32×10^-3 nm^-1, which is 2.4 times greater than our initial result while the waveguide length is 6 times shorter. Analytical examination of the relationship between sensitivity and structure of the asymmetric double-step rib waveguide shows a way to further improve performance of the photonic microcantilever sensor. We have demonstrated experimentally that greater sensitivity is achieved when increasing the step height of the double-step rib waveguide. Moreover, the improved sensitivity of the photonic microcantilever system, 0.77×10^-3 nm^-1, is close to the best reported sensitivities of other transduction methods (~10^-3 nm^-1).
Style APA, Harvard, Vancouver, ISO itp.
2

Yang, Wenjian. "Microwave Photonics and Sensing based on Silicon Photonics". Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23482.

Pełny tekst źródła
Streszczenie:
Chip scale photonic integrated circuits can provide important new functions in communications, signal processing and sensing. Recent research on microwave photonics (MWPs) and integrated optical sensors using the silicon photonic devices has opened up new opportunities for signal processing and sensing applications. MWPs brings together the world of microwave engineering and optoelectronics, which provides solutions for processing high frequency microwave signals. It has attracted significant interest in many different areas including communications, sensors, radar systems and defence applications. The use of photonic integrated circuit enhances functionalities and flexibilities as well as enabling a reduction of size and weight for MWP applications. The high integratablity of the photonic circuit not only boosts the filtering, time delay and phase shifting functionalities, but also enables the sensing applications in the nano-scale range. Integrated sensors are under high demand in many environmental chemical and biomedical applications. The mass fabricated integrated sensor provides opportunities for multi-functional sensor array with minimized volume. The research work presented in this thesis aims to investigate silicon photonics applications in MWP signal processing and different sensing circumstances. Firstly, the MWP filter based on the SOI microring resonator with phase compensation method is demonstrated. In addition, instantaneous frequency measurement based on frequency to time mapping is presented. Then, a novel integrated optical sensor system based on SOI add drop microring resonator structure is presented. The MWP techniques for high performance sensing application is explored. Lastly, to address the multi-functionality of silicon photonics based sensor, an application of integrated ultrasound optical sensor is demonstrated. It is expected the work provided in this thesis can assist in the emergence of real-world silicon photonic applications. (1992 out of 2000 characters)
Style APA, Harvard, Vancouver, ISO itp.
3

Vargas, German R. "Silicon Photonic Device for Wavelength Sensing and Monitoring". FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/734.

Pełny tekst źródła
Streszczenie:
Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. The main device is a micro-ring resonator filter of 10 $\mu m$ of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 x 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.
Style APA, Harvard, Vancouver, ISO itp.
4

Koshkinbayeva, Ainur. "New photonic architectures for mid-infrared gaz sensors integrated on silicon". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI019.

Pełny tekst źródła
Streszczenie:
Les travaux portent sur les multiplexeurs optiques fonctionnant à mi-IR pour la source à large bande dans l'application de détection de gaz. Deux configurations ont été étudiées: réseau de guides d'onde (AWG) et réseau concave planaire (PCG). Premièrement, le principe du fonctionnement a été compris afin de développer une solution analytique pour le champ de sortie en utilisant une approximation gaussienne du champ et de l'optique de Fourier. Ensuite, un outil de simulation semi-analytique de la réponse spectrale pour les deux configurations de multiplexeur a été développé dans MATLAB. La distribution normale des erreurs de phase a été introduite dans le modèle semi-analytique AWG, ce qui nous a permis d'étudier la corrélation entre l'écart-type des erreurs de phase et le niveau de diaphonie de la réponse spectrale AWG. AWG à 5,65 μm a été fabriqué à partir de la technologie SiGe / Si à l'aide de l'outil MATLAB pour le calcul des paramètres de conception et de l'outil P.Labeye pour le calcul de la géométrie AWG. Les dispositifs avec des paramètres légèrement variables ont été caractérisés: AWG1 avec guides d'ondes de 4,6 μm et MMI de 9 μm; AWG2 avec guides d'ondes de 4,6 μm et MMI de 11 μm; AWG3 avec guides d'ondes de 4,8 μm et MMI de 9 μm. Des mesures des dispositifs sur la puce 36 (centre de la plaquette) et sur la puce 32 (côté de la plaquette) ont été effectuées et analysées. Les mesures de température de AWG2 et AWG3 (puce 32 et puce 36) aux points cinq points de température ont montré une dépendance linéaire du déplacement spectral avec la température qui a une bonne corrélation avec les prédictions de simulation
The work focuses on optical multiplexers operating in mid-IR for broadband source in gas sensing application. Two configurations were studies – arrayed waveguide grating (AWG) and planar concave grating (PCG). First, principle of operation was understood in order to develop analytical solution for output field using Gaussian approximation of the field and Fourier Optics. Then, semi-analytical simulation tool of the spectral response for both multiplexer configurations was developed in MATLAB. Normal distribution of phase errors was introduced to semi-analytical AWG model, which allowed us to study the correlation between standard deviation of phase errors and the level of crosstalk of AWG spectral response. AWG at 5.65 µm was fabricated based on SiGe/Si technology using the MATLAB tool for design parameters calculation and P.Labeye’s tool for AWG geometry calculation. Devices with slightly varying parameters were characterized: AWG1 with 4.6 µm waveguides and 9µm MMI; AWG2 with 4.6 µm waveguides and 11µm MMI; AWG3 with 4.8 µm waveguides and 9µm MMI. Measurements of devices on chip 36 (center of the wafer) and chip 32 (side of the wafer) were performed and analyzed. Temperature measurements of AWG2 and AWG3 (chip 32 and chip 36) at points five temperature points showed linear dependence of spectral shift with the temperature which has a good correlation with simulation predictions
Style APA, Harvard, Vancouver, ISO itp.
5

Caroselli, Raffaele. "Development of high sensitivity photonic sensing structures based on porous silicon substrates". Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/107318.

Pełny tekst źródła
Streszczenie:
La salud y el bienestar siempre han sido el centro de atención de muchas instituciones de investigación y empresas de todo el mundo. Esto llevó a la tecnología a desarrollarse en los campos químico, biológico, médico y clínico con el objetivo de proporcionar una mejor protección al ser humano. Como consecuencia, ha surgido una competición entre el tiempo necesario para que la enfermedad progrese y el tiempo necesario para que el hombre trate dicha enfermedad. Para ganar esta competición, es necesario actuar con anticipación, cuando la enfermedad aún no está demasiado desarrollada. Esto es posible realizando una detección precoz de la enfermedad. El logro de este objetivo allana el camino para el desarrollo de dispositivos ópticos de biosensado capaces de detectar la presencia de ciertas moléculas en concentraciones extremadamente bajas. Entre ellos, las estructuras integradas fotónicas están teniendo un gran éxito debido a su considerablemente alta sensibilidad. Sin embargo, el mecanismo de detección de estas estructuras se basa en la interacción entre la onda evanescente, que se propaga a lo largo de la superficie de la estructura, y el analito a detectar. De esta forma, no todo el campo que se propaga en la estructura fotónica se usa con fines de detección, sino solo una pequeña cantidad de éste. Esto representa una limitación crucial de los sensores basados en fotónica integrada. El objetivo de esta tesis doctoral es superar esta limitación y desarrollar estructuras fotónicas de sensado más sensibles que sean capaces de detectar las concentraciones más bajas posibles. Con este objetivo, nos centramos en el estudio del silicio poroso como plataforma para el desarrollo de estructuras ópticas con sensibilidades extremadamente altas gracias a que la interacción de sensado se realiza directamente dentro de la propia estructura, lo que permite explotar todo el campo que se propaga.
Health and well-being have always been the center of attention of many research institutions and companies around the world. This led the technology to develop in the chemical, biological, medical and clinical fields with the aim to provide a better protection to the human being. As a consequence, a competition is born between the time necessary to the disease to progress and the time necessary to man to treat such disease. In order to win this competition, it is necessary to act with anticipation, when disease is not too developed yet. This is possible by performing an early-detection. The achievement of this goal paves the way for the development of optical biosensing devices able to detect the presence of certain molecules at extremely low concentrations. Among them, photonic integrated structures are finding a great success due to their considerably high sensitivity. However, the sensing mechanism of these structures is based on the interaction between the evanescent wave, propagating along the structure surface, and the target analyte to detect. In this way, not all the field propagating in the photonic structure is used for sensing purposes, but rather only a small amount of it. This represents a crucial limitation of the integrated photonics based sensors. The aim of this PhD Thesis is to overcome this limitation and to develop more sensitive photonic sensing structures able to detect the lowest concentration possible. To this aim, we focused on the study of porous silicon as platform for the development of optical structures with extremely high sensitivities thanks to the fact that the sensing interaction takes place directly inside the structure itself, allowing to exploit all the field propagating in the structure.
La salut i el benestar sempre han sigut el centre d'atenció de moltes institucions de recerca i empreses de tot el món. Açò va portar a la tecnologia a desenvolupar-se en els camps químic, biològic, mèdic i clínic amb l'objectiu de proporcionar una millor protecció a l'ésser humà. Com a conseqüència, ha sorgit una competició entre el temps necessari per que la malaltia progresse i el temps necessari per que l'home tracte aquesta malaltia. Per a guanyar aquesta competició, és necessari actuar amb anticipació, quan la malaltia encara no està massa desenvolupada. Açò és possible realitzant una detecció precoç de la malaltia. L'assoliment d'aquest objectiu facilita el camí per al desenvolupament de dispositius òptics de biosensat capaços de detectar la presència de certes molècules en concentracions extremadament baixes. Entre ells, les estructures fotòniques integrades estan tenint un gran èxit a causa de la seua considerablement alta sensibilitat. No obstant açò, el mecanisme de detecció d'aquestes estructures es basa en la interacció entre l'ona evanescent, que es propaga al llarg de la superfície de l'estructura, i l'analit a detectar. D'aquesta forma, no tot el camp que es propaga en l'estructura fotònica s'usa amb finalitats de detecció, sinó solament una xicoteta quantitat d'aquest. Açò representa una limitació crucial dels sensors basats en fotònica integrada. L'objectiu d'aquesta tesi doctoral és superar aquesta limitació i desenvolupar estructures fotòniques de sensat més sensibles que siguen capaces de detectar les concentracions més baixes possibles. Amb aquest objectiu, ens centrem en l'estudi del silici porós com a plataforma per al desenvolupament d'estructures òptiques amb sensibilitats extremadament altes gràcies a que la interacció de sensat es realitza directament dins de la pròpia estructura, el que permet explotar tot el camp que es propaga.
Caroselli, R. (2018). Development of high sensitivity photonic sensing structures based on porous silicon substrates [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107318
TESIS
Style APA, Harvard, Vancouver, ISO itp.
6

Liu, Qiankun. "SiGe photonic integrated circuits for mid-infrared sensing applications". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS166/document.

Pełny tekst źródła
Streszczenie:
La spectroscopie dans le moyen-infrarouge est une méthode universelle pour identifier les substances chimiques et biologiques, car la plupart des molécules ont leurs résonances de vibration et de rotation dans cette plage de longueurs d'onde. Les systèmes moyen infrarouge disponibles dans le commerce reposent sur des équipements volumineux et coûteux, tandis que de nombreux efforts sont maintenant consacrés à la réduction de leur taille et leur intégration sur circuits intégrés. L’utilisation de la technologie silicium pour la réalisation de circuits photoniques dans le moyen-infrarouge présente de nombreux avantages: fabrication fiable, à grand volume, et réalisation de circuits photoniques à hautes performances, compacts, légers et à faible consommation énergétique. Ces avantages sont particulièrement intéressant pour les systèmes de détection spectroscopique moyen infrarouge, qui besoin d'être portable et à faible coût. Parmi les différents matériaux disponibles en photonique silicium, les alliages silicium-germanium (SiGe) à forte concentration en Ge sont particulièrement intéressants en raison de la grande fenêtre de transparence du Ge, pouvant atteindre 15 µm. Dans ce contexte, l'objectif de cette thèse est d'étudier une nouvelle plate-forme SiGe à forte concentration en Ge, pour la démonstration de circuits photoniques moyen infra rouge. Cette nouvelle plate-forme devrait bénéficier d'une large gamme de transparence en longueurs d'onde de transparence et de la possibilité d’ajuster les propriétés des guides optiques (indice effectif, dispersion,…). Au cours de cette thèse, différentes plates-formes basées sur différents profils graduels du guide d’onde ont été étudiées. Tout d'abord, il a été démontré qu’il était possible d’obtenir des guides présentant de faibles pertes optiques inférieures à 3 dB/cm dans une large plage de longueurs d'onde, de 5,5 à 8,5 µm. Une preuve de concept de détection de molécules, basée sur l'absorption de la partie évanescent du mode optique a ensuite été démontrée. Ensuite, les composants formant les briques de base classiques de la photonique intégrée ont été étudiés. Les premières cavités intégrées ont été réalisées à 8 µm. Deux configurations ont été étudiées : des cavité Fabry-Perot utilisant des miroirs de Bragg intégrés dans les guides d’onde et des résonateurs en anneau. Un spectromètre à transformée de Fourier fonctionnant sur une large bande spectrale, et pour les deux polarisations de la lumière a également été démontré. Tous ces résultats reposent sur la conception des matériaux et des composants, la fabrication en salle blanche et la caractérisation expérimentale. Ce travail a été effectué dans le cadre du projet européen INsPIRE en collaboration avec le Pr. Giovanni Isella de Politecnico Di Milano
Mid-infrared (mid-IR) spectroscopy is a nearly universal way to identify chemical and biological substances, as most of the molecules have their vibrational and rotational resonances in the mid-IR wavelength range. Commercially available mid-IR systems are based on bulky and expensive equipment, while lots of efforts are now devoted to the reduction of their size down to chip-scale dimensions. The use of silicon photonics for the demonstration of mid-IR photonic circuits will benefit from reliable and high-volume fabrication to offer high performance, low cost, compact, lightweight and power consumption photonic circuits, which is particularly interesting for mid-IR spectroscopic sensing systems that need to be portable and low cost. Among the different materials available in silicon photonics, Germanium (Ge) and Silicon-Germanium (SiGe) alloys with a high Ge concentration are particularly interesting because of the wide transparency window of Ge up to 15 µm. In this context, the objective of this thesis is to investigate a new Ge-rich graded SiGe platform for mid-IR photonic circuits. Such new plateform was expected to benefit from a wide transparency wavelength range and a high versatility in terms of optical engineering (effective index, dispersion, …). During this thesis, different waveguides platforms based on different graded profiles have been investigated. First it has been shown that waveguides with low optical losses of less than 3 dB/cm can be obtained in a wide wavelength range, from 5.5 to 8.5 µm. A proof of concept of sensing based on the absorption of the evanescent component of the optical mode has then been demonstrated. Finally, elementary building blocs have been investigated. The first Bragg mirror-based Fabry Perot cavities and racetrack resonators have been demonstrated around 8 µm wavelength. A broadband dual-polarization MIR integrated spatial heterodyne Fourier-Transform spectrometer has also been obtained. All these results rely on material and device design, clean-room fabrication and experimental characterization. This work was done in the Framework of EU project INsPIRE in collaboration with Pr. Giovanni Isella from Politecnico Di Milano
Style APA, Harvard, Vancouver, ISO itp.
7

Chen, Li. "Hybrid Silicon and Lithium Niobate Integrated Photonics". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429660021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Schröder, Tim. "Integrated photonic systems for single photon generation and quantum applications". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16723.

Pełny tekst źródła
Streszczenie:
Im Rahmen der vorliegenden Dissertation wurden neuartige integrierte Einzelphotonenquellen (EPQ) und ihre Anwendung für die Quanteninformationsverarbeitung entwickelt und untersucht. Die Erzeugung von Einzelphotonen basiert auf einzelnen Defektzentren in nanometergroßen Diamantkristallen mit einzigartigen optischen Eigenschaften: Stabilität bei Zimmertemperatur ohne optisches Blinken. Diamantkristalle mit Größen bis unter 20nm wurden mit neuartigen „pick-and-place“ Techniken (z.B. mit einem Atomkraftmikroskop) in komplexe photonische Strukturen integriert. Zwei unterschiedliche Ansätze für die Realisierung der neuartigen EPQ wurden verfolgt. Beim ersten werden fluoreszierende Diamantkristalle in nano- und mikrometergroße Faser-basierte oder resonante Strukturen in einem „bottom-up“ Ansatz integriert, dadurch werden zusätzliche optische Komponenten überflüssig und das Gesamtsystem ultra-stabil und wartungsfrei. Der zweite Ansatz beruht auf einem Festkörperimmersionsmikroskop (FIM). Seine Festkörperimmersionslinse wirkt wie eine dielektrische Antenne für die Emission der Defektzentren. Es ermöglicht die höchsten bisher erreichten Photonenzählraten von Stickstoff-Fehlstellen von bis zu 2.4Mcts/s und Einsammeleffizienzen von bis zu 4.2%. Durch Anwendung des FIM bei cryogenen Temperaturen wurden neuartige Anwendungen und fundamentale Untersuchungen möglich, weil Photonenraten signifikant erhöht wurden. Die Bestimmung der spektralen Diffusionszeit eines einzelnen Defektzentrums (2.2µs) gab neue Erkenntnisse über die Ursachen von spektraler Diffusion. Spektrale Diffusion ist eine limitierende Eigenschaft für die Realisierung von Quanteninformationsanwendungen. Das Tisch-basierte FIM wurde außerdem als kompakte mobile EPQ mit Ausmaßen von nur 7x19x23cm^3 realisiert. Es wurde für ein Quantenkryptographie-Experiment implementiert, zum ersten Mal mit Siliziumdefektzentren. Des Weiteren wurde ein neues Konzept für die Erzeugung von infraroten EPQ entwickelt und realisiert.
The presented thesis covers the development and investigation of novel integrated single photon (SP) sources and their application for quantum information schemes. SP generation was based on single defect centers in diamond nanocrystals. Such defect centers offer unique optical properties as they are room temperature stable, non-blinking, and do not photo-bleach over time. The fluorescent nanocrystals are mechanically stable, their size down to 20nm enabled the development of novel nano-manipulation pick-and-place techniques, e.g., with an atomic force microscope, for integration into photonic structures. Two different approaches were pursued to realize novel SP sources. First, fluorescent diamond nanocrystals were integrated into nano- and micrometer scaled fiber devices and resonators, making them ultra-stable and maintenance free. Secondly, a solid immersion microscope (SIM) was developed. Its solid immersion lens acts as a dielectric antenna for the emission of defect centers, enabling the highest photon rates of up to 2.4Mcts/s and collection efficiencies of up to 4.2% from nitrogen vacancy defect centers achieved to date. Implementation of the SIM at cryogenic temperatures enabled novel applications and fundamental investigations due to increased photon rates. The determination of the spectral diffusion time of a single nitrogen vacancy defect center (2.2µs) gave new insights about the mechanisms causing spectral diffusion. Spectral diffusion is a limiting property for quantum information applications. The table-top SIM was integrated into a compact mobile SP system with dimension of only 7x19x23cm^3 while still maintaining record-high stable SP rates. This makes it interesting for various SP applications. First, a quantum key distribution scheme based on the BB84 protocol was implemented, for the first time also with silicon vacancy defect centers. Secondly, a conceptually novel scheme for the generation of infrared SPs was introduced and realized.
Style APA, Harvard, Vancouver, ISO itp.
9

Shnaiderman, Rami [Verfasser], Vasilis [Akademischer Betreuer] Ntziachristos, Vasilis [Gutachter] Ntziachristos i Bernhard [Gutachter] Wolfrum. "Silicon photonics sensors of ultrasound for optoacoustic imaging / Rami Shnaiderman ; Gutachter: Vasilis Ntziachristos, Bernhard Wolfrum ; Betreuer: Vasilis Ntziachristos". München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/1238374034/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Frem, Leonardo A. "Hall Effect Modeling in FEM Simulators and Comparison to Experimental Results in Silicon and Printed Sensors". DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1618.

Pełny tekst źródła
Streszczenie:
Finite element method simulation models for thin-film semiconductor-based Hall sensors were developed using secondary data in order to understand their behavior under strong magnetic fields. Given a device geometry and charge carrier density and mobility, the models accurately calculated sensor resistance, Hall voltage under a normally-incident constant magnetic field, and expected offset from a population of Hall devices. The model was successfully matched against data from integrated chip Hall sensors from St. Jude Medical. Additionally, the feasibility of creating Hall effect devices with common carbon ink was explored experimentally. The material properties obtained from testing these ink-based devices through the Van der Pauw method were added to the simulation model to analyze validity of the collected data.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Silicon photonic sensors"

1

Kallepalli, Lakshmi Narayana Deepak, red. Applications of Silicon Photonics in Sensors and Waveguides. InTech, 2018. http://dx.doi.org/10.5772/intechopen.71590.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Sensors. Elsevier Science & Technology, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Durini, Daniel. High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Sensors. Elsevier Science & Technology, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Durini, Daniel. High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Sensors. Elsevier Science & Technology, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Silicon photonic sensors"

1

Hameed, Mohamed Farhat O., A. Samy Saadeldin, Essam M. A. Elkaramany i S. S. A. Obayya. "Introduction to Silicon Photonics". W Computational Photonic Sensors, 73–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76556-3_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hameed, Mohamed Farhat O., A. Samy Saadeldin, Essam M. A. Elkaramany i S. S. A. Obayya. "Silicon Nanowires for DNA Sensing". W Computational Photonic Sensors, 321–42. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76556-3_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Werquin, S., J. W. Hoste, D. Martens, T. Claes i P. Bienstman. "Silicon Ring Resonator-Based Biochips". W Computational Photonic Sensors, 385–421. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76556-3_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Janz, S., A. Densmore, D. X. Xu, P. Waldron, J. Lapointe, J. H. Schmid, T. Mischki i in. "Silicon Photonic Wire Waveguide Sensors". W Integrated Analytical Systems, 229–64. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-98063-8_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ahmed, Abdelrahman H., Alexander Rylyakov i Sudip Shekhar. "Coherent Silicon Photonic Links". W Analog Circuits for Machine Learning, Current/Voltage/Temperature Sensors, and High-speed Communication, 331–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91741-8_18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Park, Bryan, i Olav Solgaard. "Monolithic Silicon Photonic Crystal Fiber Tip Sensors". W Springer Series in Surface Sciences, 69–90. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06998-2_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zanetto, Francesco. "Low-Noise Mixed-Signal Electronics for Closed-Loop Control of Complex Photonic Circuits". W Special Topics in Information Technology, 55–64. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85918-3_5.

Pełny tekst źródła
Streszczenie:
AbstractAn increasing research effort is being carried out to profit from the advantages of photonics not only in long-range telecommunications but also at short distances, to implement board-to-board or chip-to-chip interconnections. In this context, Silicon Photonics emerged as a promising technology, allowing to integrate optical devices in a small silicon chip. However, the integration density made possible by Silicon Photonics revealed the difficulty of operating complex optical architectures in an open-loop way, due to their high sensitivity to fabrication parameters and temperature variations. In this chapter, a low-noise mixed-signal electronic platform implementing feedback control of complex optical architectures is presented. The system exploits the ContactLess Integrated Photonic Probe, a non-invasive detector that senses light in silicon waveguides by measuring their electrical conductance. The CLIPP readout resolution has been maximized thanks to the design of a low-noise multichannel ASIC, achieving an accuracy better than −35 dBm in light monitoring. The feedback loop to stabilize the behaviour of photonic circuits is then closed in the digital domain by a custom mixed-signal electronic platform. Experimental demonstrations of optical communications at high data-rate confirm the effectiveness of the proposed approach.
Style APA, Harvard, Vancouver, ISO itp.
8

Rasras, Mahmoud S., i Osama Al Mrayat. "Lab-on-Chip Silicon Photonic Sensor". W The IoT Physical Layer, 83–102. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93100-5_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Roy, Sandip Kumar, i Preeta Sharan. "Photonic Crystal Based Sensor for DNA Analysis of Cancer Detection". W Silicon Photonics & High Performance Computing, 79–85. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7656-5_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hnatiw, A. J. P., R. I. MacDonald, P. S. Apté i W. D. MacDonald. "A Silica Based Integrated Optic Microwave Power Sensor". W Applications of Photonic Technology 2, 831–36. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_126.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Silicon photonic sensors"

1

Agarwal, Anuradha M. "Building a platform for mid-infrared photonic sensors". W Silicon Photonics XVIII, redaktorzy Graham T. Reed i Andrew P. Knights. SPIE, 2023. http://dx.doi.org/10.1117/12.2653288.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Sreenivasulu, T., V. R. Kolli, K. Anusree, T. R. Yadunath, T. Badrinarayana, T. Srinivas, Gopalkrishna Hegde i S. Mohan. "Photonic crystal based force sensor on silicon microcantilever". W 2015 IEEE Sensors. IEEE, 2015. http://dx.doi.org/10.1109/icsens.2015.7370225.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Barea, Luis A. M., Mario C. M. M. Souza, André L. Moras, Álvaro R. G. Catellan, Giuseppe A. Cirino, Antônio A. G. Von Zuben, Newton C. Frateschi i Jose W. M. Bassani. "Photonic molecules for application in silicon-on-insulator optical sensors". W Silicon Photonics XIII, redaktorzy Graham T. Reed i Andrew P. Knights. SPIE, 2018. http://dx.doi.org/10.1117/12.2287844.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chrostowski, Lukas, Samantha Grist, Jonas Flueckiger, Wei Shi, Xu Wang, Eric Ouellet, Han Yun i in. "Silicon photonic resonator sensors and devices". W SPIE LASE, redaktorzy Alexis V. Kudryashov, Alan H. Paxton i Vladimir S. Ilchenko. SPIE, 2012. http://dx.doi.org/10.1117/12.916860.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pancheri, L., D. Stoppa, N. Massari, M. Malfatti, C. Piemonte i G. F. Dalla Betta. "Current assisted photonic mixing devices fabricated on high resistivity silicon". W 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716606.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ranacher, Christian, Cristina Consani, Ursula Hedenig, Thomas Grille, Ventsislav Lavchiev i Bernhard Jakoby. "A photonic silicon waveguide gas sensor using evanescent-wave absorption". W 2016 IEEE Sensors. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808688.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Dong, B., H. Cai, M. Tang, Y. D. Gu, Z. C. Yang, Y. F. Jin, Y. L. Hao, D. L. Kwong i A. Q. Liu. "NEMS integrated photonic system using nano-silicon-photonic circuits". W TRANSDUCERS 2015 - 2015 18th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2015. http://dx.doi.org/10.1109/transducers.2015.7181093.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Chakravarty, Swapnajit, Hai Yan, Yi Zou i Ray T. Chen. "Mid-infrared silicon photonic devices and sensors". W 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM). IEEE, 2017. http://dx.doi.org/10.1109/phosst.2017.8012711.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Marin, Y., A. Celik, S. Faralli, L. Adelmini, C. Kopp, F. Di Pasquale i C. J. Oton. "Silicon Photonic Chip for Dynamic Wavelength Division Multiplexed FBG Sensors Interrogation". W Optical Fiber Sensors. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/ofs.2018.the45.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Pacholski, C. "Detection of biomolecules with 1D photonic crystals based on porous silicon". W 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6985146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii