Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Silicon nitride.

Artykuły w czasopismach na temat „Silicon nitride”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Silicon nitride”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Yusrini, Marita, i Yaacob Iskandar Idris. "Dispersion of Strengthening Particles on the Nickel-Iron-Silicon Nitride Nanocomposite Coating". Advanced Materials Research 647 (styczeń 2013): 705–10. http://dx.doi.org/10.4028/www.scientific.net/amr.647.705.

Pełny tekst źródła
Streszczenie:
Nickel-iron-silicon nitride nanocomposite coatings were prepared by electrodeposition technique. The deposition was performed at current density of 11.5 A dm-2. Nano-size silicon nitride was mixed in the electrolyte bath as dispersed phase. The effects of silicon nitride nanoparticulates in the nickel-iron nanocomposite coating were investigated in relation to the concentration of silicon nitride in the plating bath. X-ray diffraction (XRD) analysis showed that the deposited nickel iron alloy coating has face-centered cubic structure (FCC). However, a mixture of body-centered cubic (BCC) and face-centered cubic (FCC) phases were observed for nickel iron-silicon nitride nanocomposite coatings. . The change of crystal structure to FCC + BCC is due to the higher Fe content in the deposit. The crystallite size of Ni-Fe nanocomposite coating decreased with increasing concentration of silicon nitride in the coating. An increase of silicone nitride in electrolyte solution leads to the increase in surface roughness of the nickel-iron-silicon nitride nanocomposite.
Style APA, Harvard, Vancouver, ISO itp.
2

Yang, S., R. F. Gibson, G. M. Crosbie i R. L. Allor. "Thermal Cycling Effects on Dynamic Mechanical Properties and Crystallographic Structures of Silicon Nitride-Based Structural Ceramics". Journal of Engineering for Gas Turbines and Power 119, nr 2 (1.04.1997): 279–84. http://dx.doi.org/10.1115/1.2815571.

Pełny tekst źródła
Streszczenie:
Thermal cycling effects on dynamic mechanical properties of hot pressed silicon nitride (HPSN) based structural ceramics were investigated in a simulated thermal cycling environment from room temperature up to 1100°C. Two monolithic silicon nitrides and two silicon nitride composites reinforced with silicon carbide whiskers were studied in such an environment. Experiments show that the dynamic mechanical properties of the tested materials are influenced by thermal cycle. The materials stiffened slightly while damping capacity decreased slightly during each thermal cycle. X-ray diffraction (XRD) was subsequently used to examine the corresponding crystallographic alterations. The XRD patterns show that the amorphous glass phases in the silicon nitride matrix were partially crystallized during thermal cycling.
Style APA, Harvard, Vancouver, ISO itp.
3

Sung, Rak Joo, Seung Ho Kim, Takafumi Kusunose, Tadachika Nakayama, Tohru Sekino i Koichi Niihara. "Mechanical and Wear Properties of Silicon Nitride Added with AlN". Materials Science Forum 486-487 (czerwiec 2005): 209–12. http://dx.doi.org/10.4028/www.scientific.net/msf.486-487.209.

Pełny tekst źródła
Streszczenie:
Silicon nitride with various amount of AlN as a sintering aid was sintered by a hot press method. Densified silicon nitrides were obtained, and it was found that the mechanical and wear properties were dependent on the contents of AlN. The effect of a/b phase on the mechanical and wear properties of silicon nitride was investigated. The properties were changed depending on the amount of a/b phase. In the brittle materials, tribological behaviors were dependent on the microstructure as well as hardness and fracture toughness. We focus on the relationship between the microstructure and mechanical/wear properties of silicon nitride including AlN additives.
Style APA, Harvard, Vancouver, ISO itp.
4

Gritsenko, Vladimir A., Alexandr V. Shaposhnikov, W. M. Kwok, Hei Wong i Georgii M. Jidomirov. "Valence band offset at silicon/silicon nitride and silicon nitride/silicon oxide interfaces". Thin Solid Films 437, nr 1-2 (sierpień 2003): 135–39. http://dx.doi.org/10.1016/s0040-6090(03)00601-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Park, Dong-Soo, i Chang-Won Kim. "Anisotropy of Silicon Nitride with Aligned Silicon Nitride Whiskers". Journal of the American Ceramic Society 82, nr 3 (22.12.2004): 780–82. http://dx.doi.org/10.1111/j.1151-2916.1999.tb01836.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hadfield, Mark, Wei Wang i Andrew Wereszczak. "Mechanical Properties of Silicon Nitride Using RUS & C-Sphere Methodology". Advances in Science and Technology 64 (październik 2010): 71–75. http://dx.doi.org/10.4028/www.scientific.net/ast.64.71.

Pełny tekst źródła
Streszczenie:
Silicon nitride is a type of engineering ceramic which has been used in ball bearing and other rolling contact applications owing to its good fatigue life, high temperature strength and tribological performance. In this paper, the mechanical properties of Hot Isostatically Pressed (HIPed) and Sintered and Reaction Bonded Silion Nitride (SRBSN) have been studied. The elastic modulus and poisson’s ratio of three types of commerical grade HIPed silicon nitride, and ground SRBSN with three surface condidtions were measured using a Resonance Ultrasound Spectroscopy (RUS). The RUS measurement reveals the variation of elastic properties across different types of HIPed silicon nitride specimens. The surface strength of silicon nitride are studied using a C-sphere specimen, and the results show that SRBSN with three different surface finishing conditions show varied surface strength. The RUS and C-sphere techniques can potentially be used to sample the quality and consistency of ball bearing elements.
Style APA, Harvard, Vancouver, ISO itp.
7

Blumenthal, Daniel J., Rene Heideman, Douwe Geuzebroek, Arne Leinse i Chris Roeloffzen. "Silicon Nitride in Silicon Photonics". Proceedings of the IEEE 106, nr 12 (grudzień 2018): 2209–31. http://dx.doi.org/10.1109/jproc.2018.2861576.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hampshire, Stuart. "Silicon Nitride Ceramics". Materials Science Forum 606 (październik 2008): 27–41. http://dx.doi.org/10.4028/www.scientific.net/msf.606.27.

Pełny tekst źródła
Streszczenie:
Silicon nitride is one of the major structural ceramics that has been developed following many years of intensive research. It possesses high flexural strength, high fracture resistance, good creep resistance, high hardness and excellent wear resistance. These properties arise from the processing of the ceramic by liquid phase sintering and the development of microstructures in which high aspect ratio grains and intergranular glass phase lead to excellent fracture toughness and high strength. The glass phase softens at high temperature and controls the creep rate of the ceramic. The purpose of this review is to examine the development of silicon nitride and the related sialons and their processing into a range of high-grade structural ceramic materials. The development of knowledge of microstructure–property relationships in silicon nitride materials is outlined, particularly recent advances in understanding the effects of grain boundary chemistry and structure on mechanical properties. This review should be of interest to scientists and engineers concerned with the processing and use of ceramics for structural engineering applications.
Style APA, Harvard, Vancouver, ISO itp.
9

MECARTNEY, M. L., R. SINCLAIR i R. E. LOEHMAN. "Silicon Nitride Joining". Journal of the American Ceramic Society 68, nr 9 (wrzesień 1985): 472–78. http://dx.doi.org/10.1111/j.1151-2916.1985.tb15811.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Horiuchi, Noriaki. "Silicon nitride success". Nature Photonics 6, nr 7 (28.06.2012): 412. http://dx.doi.org/10.1038/nphoton.2012.169.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

HANABUSA, Takanobu, Shigeyuki UEMIYA i Toshinori KOJIMA. "Coating of Silicon Nitride Fine-powder on Silicon Nitride Particles." Journal of the Surface Finishing Society of Japan 49, nr 1 (1998): 92–93. http://dx.doi.org/10.4139/sfj.49.92.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Turan, Servet, i Kevin M. Knowles. "Interphase boundaries between hexagonal boron nitride and beta silicon nitride in silicon nitride-silicon carbide particulate composites". Journal of the European Ceramic Society 17, nr 15-16 (styczeń 1997): 1849–54. http://dx.doi.org/10.1016/s0955-2219(97)00070-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Knowles, Kevin M., i Servet Turan. "Boron nitride–silicon carbide interphase boundaries in silicon nitride–silicon carbide particulate composites". Journal of the European Ceramic Society 22, nr 9-10 (wrzesień 2002): 1587–600. http://dx.doi.org/10.1016/s0955-2219(01)00481-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Abe, Osami. "Sintering of silicon nitride with alkaline-earth nitrides". Ceramics International 16, nr 1 (styczeń 1990): 53–60. http://dx.doi.org/10.1016/0272-8842(90)90063-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

He, Jiayu, Yuandong Liu, Xiaofeng Zeng, Yan Tong, Run Liu, Kan Wang, Xiangdong Shangguan, Guanzhou Qiu i Coswald Stephen Sipaut. "Silicon Nitride Bioceramics Sintered by Microwave Exhibit Excellent Mechanical Properties, Cytocompatibility In Vitro, and Anti-Bacterial Properties". Journal of Functional Biomaterials 14, nr 11 (17.11.2023): 552. http://dx.doi.org/10.3390/jfb14110552.

Pełny tekst źródła
Streszczenie:
Silicon nitride is a bioceramic with great potential, and multiple studies have demonstrated its biocompatibility and antibacterial properties. In this study, silicon nitride was prepared by a microwave sintering technique that was different from common production methods. SEM and pore distribution analysis revealed the microstructure of microwave-sintered silicon nitride with obvious pores. Mechanical performance analysis shows that microwave sintering can improve the mechanical properties of silicon nitride. The CCK-8 method was used to demonstrate that microwave-sintered silicon nitride has no cytotoxicity and good cytocompatibility. From SEM and CLSM observations, it was observed that there was good adhesion and cross-linking of cells during microwave-sintered silicon nitride, and the morphology of the cytoskeleton was good. Microwave-sintered silicon nitride has been proven to be non-cytotoxic. In addition, the antibacterial ability of microwave-sintered silicon nitride against Staphylococcus aureus and Escherichia coli was tested, proving that it has a good antibacterial ability similar to the silicon nitride prepared by commonly used processes. Compared with silicon nitride prepared by gas pressure sintering technology, microwave-sintered silicon nitride has excellent performance in mechanical properties, cell compatibility, and antibacterial properties. This indicates its enormous potential as a substitute material for manufacturing bone implants.
Style APA, Harvard, Vancouver, ISO itp.
16

Koh, Young-Hag, Hae-Won Kim i Hyoun-Ee Kim. "Mechanical Properties of Three-Layered Monolithic Silicon Nitride-Fibrous Silicon Nitride/Boron Nitride Monolith". Journal of the American Ceramic Society 85, nr 11 (20.12.2004): 2840–42. http://dx.doi.org/10.1111/j.1151-2916.2002.tb00538.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Han, In Sub, Seung Ho Cheon, Yong Hee Chung, Doo Won Seo, Shi Woo Lee, Sang Kuk Woo i Kee Sung Lee. "Preparation and Properties of Silicon Nitride Ceramics by Nitrided Pressureless Sintering (NPS) Process". Key Engineering Materials 317-318 (sierpień 2006): 125–30. http://dx.doi.org/10.4028/www.scientific.net/kem.317-318.125.

Pełny tekst źródła
Streszczenie:
Silicon nitride ceramics were prepared by new nitrided pressureless sintering (NPS) process in this study. The microstructures, strengths and thermal properties of the NPS silicon nitride ceramics containing three types of Al2O3 and Y2O3 sintering additives were investigated. Additionally, we have investigated the effect of silicon metal contents changing with 0, 5, 10, 15 and 20 wt% in each composition. The silicon nitride was successfully densified using NPS process, particularly at the starting composition of 5 wt.% Al2O3, 5 wt.% Y2O3, and 5 wt.% Si addition. The maximum flexural strengths and relative densities of these specimens were 500 MPa and 98%, respectively. The flexural strength of sintered specimens after the thermal shock test between 30oC and 1300oC for 20,000 cycles was maintained with the original laboratory strength of 500MPa by low thermal expansion coefficient, 2.9 × 10-6/oC, and high thermal conductivity, 28 W/m⋅oC.
Style APA, Harvard, Vancouver, ISO itp.
18

Brito, M. E., K. Watari, K. Hirao i M. Toriyama. "“Special Boundaries” in Silicon Nitride With High Thermal Conductivty". Microscopy and Microanalysis 6, S2 (sierpień 2000): 384–85. http://dx.doi.org/10.1017/s1431927600034413.

Pełny tekst źródła
Streszczenie:
Significant improvements in the fracture resistance, fracture toughness and thermal properties of silicon nitride ceramics are obtained by tailoring the microstructure. Combined use of seeding and tape casting techniques allowed the production of highly anisotropic microstructures. The seeded silicon nitrides exhibited a distinct bimodal microstructure, with large elongated β-Si3N4 grains, grown from seeds, dispersed within a fine-grained matrix. These large grains in the seeded silicon nitrides lie in the casting planes and self-align along the casting direction during tape forming process. It is here, when due to the high degree of alignment that “special boundaries” without the, otherwise, ubiquitous amorphous phase occurs. These “special” boundaries, hardly seen in three dimensionally random microstructures, are the object of the present study.Silicon nitride with high thermal conductivity of up to 120 W/mK (ref. 3) is produced by hot-pressing at 1800 °C for 2 h. powders with the following nominal composition: α-Si3N4 ;5 wt% Y203; 5 vol.% (β-Si3N4 seeds.
Style APA, Harvard, Vancouver, ISO itp.
19

Kang, Chang Gyu, Chul Kim, Tae Woo Kim, In Sub Han i Kee Sung Lee. "Contact Damage and Strength Degradation in Nitrided Pressureless Sintered (NPS) Silicon Nitrided Ceramics". Key Engineering Materials 353-358 (wrzesień 2007): 102–5. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.102.

Pełny tekst źródła
Streszczenie:
A study is made of the damage resistance and strength degradation of nitrided pressureless sintered (NPS) silicon nitride ceramics. The silicon nitride is prepared by cost-effective NPS process combining by nitridation and consecutive pressureless sintering. Contact testing with spherical indenters is used to characterize the damage response. Examination of the indentation sites indicates a quasi-plastic damage modes are observed. Bend tests on specimens containing quasi-plastic contact damages reveal those materials to be not susceptible to strength degradation.
Style APA, Harvard, Vancouver, ISO itp.
20

Biasini, V., S. Guicciardi i A. Bellosi. "Silicon nitride-silicon carbide composite materials". International Journal of Refractory Metals and Hard Materials 11, nr 4 (styczeń 1992): 213–21. http://dx.doi.org/10.1016/0263-4368(92)90048-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Ratajczak, Jacek, Krzysztof Hejduk, Marek Lipiński, Tadeusz Piotrowski, Mariusz Płuska, Adam Łaszcz i Andrzej Czerwiński. "Study of Silicon Nanoparticles Formation in Silicon Nitride". Solid State Phenomena 186 (marzec 2012): 66–69. http://dx.doi.org/10.4028/www.scientific.net/ssp.186.66.

Pełny tekst źródła
Streszczenie:
We present results of the study on the silicon nanoparticles formation in multilayer silicon nitride structures. These structures consist of pairs of stoichiometric silicon nitride dielectric layers (SiNx) and silicon rich nitride layers (SRN). Silicon nanocrystals precipitate from the SRN layer during annealing at high temperatures (1000 °C or 1100 °C). High resolution transmission electron microscopy has been applied for investigation of the nanocrystals formation. Surface photovoltage spectroscopy technique was used for the spectral characterization of prepared structures
Style APA, Harvard, Vancouver, ISO itp.
22

Schneider, V., C. Reimann i J. Friedrich. "Wetting and infiltration of nitride bonded silicon nitride by liquid silicon". Journal of Crystal Growth 440 (kwiecień 2016): 31–37. http://dx.doi.org/10.1016/j.jcrysgro.2016.02.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Kawai, Ch, i A. Yamakawa. "Preparation of fibre-like silicon nitride from amorphous silicon nitride powder". Journal of Materials Science Letters 14, nr 3 (1995): 192–93. http://dx.doi.org/10.1007/bf00318253.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Kondo, Naoki. "High Strength and High Toughness Anisotropic Silicon Nitrides Fabricated by Forging Technique". Key Engineering Materials 280-283 (luty 2007): 1213–18. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.1213.

Pełny tekst źródła
Streszczenie:
Grain alignment control to make anisotropic microstructure is one of the most promising techniques to achieve superior mechanical properties in specific directions. Anisotropic silicon nitrides, which were fabricated by a forging technique, can show superior mechanical properties at room temperature as well as at elevated temperatures. A sinter-forged silicon nitride with yttria and alumina additives exhibited very high strength of 2.1GPa at room temperature, meanwhile that with lutetia additive showed high strength of 700MPa at 1500oC. Anisotropic silicon nitrides are also advantageous to achieve higher fracture energy. Such silicon nitrides can show 3~5 times higher fracture energy than isotropic ones. Sinter-forging technique is also applicable to fabricate porous anisotropic silicon nitrides. In this paper, fabrication and mechanical properties of anisotropic silicon nitrides are briefly described.
Style APA, Harvard, Vancouver, ISO itp.
25

GUAHK, KIL HO, IN SUB HAN i KEE SUNG LEE. "STRENGTH DEGRADATIONS FROM HERTZIAN CONTACT DAMAGES IN NITRIDED PRESSURELESS SINTERED SILICON NITRIDE CERAMICS". International Journal of Modern Physics B 22, nr 09n11 (30.04.2008): 1819–26. http://dx.doi.org/10.1142/s021797920804747x.

Pełny tekst źródła
Streszczenie:
Strength degradations in silicon nitride ceramics subject to damage from contact with hard spheres are investigated. Strengths against indentation load, number of cycles in contact, or stress-rate parameter are reported and compared with theoretical models. Silicon nitride ceramics are prepared by nitride pressureless sintering (NPS) process, which process is the continuous process of nitridation reaction of Si metal combined with subsequent pressureless sintering. Microstructure characterizations reveal silicon nitride fabricated by NPS process exhibits a quasi-plastic mode, with continuous strength loss beyond a load above the onset of yield, and falloff at high number of cycles, > 105 at contact load, P = 950 N , using WC sphere r = 1.98 mm . The strength degradation is substantially faster by dynamic fatigue. Failures originated from contact damages, quasi-plastic microcrack zones, with developing radial cracks during strength test. The implication is that quasi-plastic damage of NPS silicon nitride itself can preserve benefits from the inherent higher damage tolerance at lower number of cycles of contacts, but fatigue susceptibility at multicycle contacts and lower stressing rate.
Style APA, Harvard, Vancouver, ISO itp.
26

Kang, Chang Gyu, Joong Gwun Park, Tae Won Kang, Chul Kim, Tae Woo Kim, In Sub Han i Kee Sung Lee. "Mechanical Properties of Si3N4 Ceramics Prepared by Nitrided Pressureless Sintered (NPS) Process". Solid State Phenomena 124-126 (czerwiec 2007): 1461–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1461.

Pełny tekst źródła
Streszczenie:
As an alternative to degassing pipe and rotor blade using in molten aluminum industry, we investigate the mechanical properties of silicon nitride ceramic components prepared by nitrided pressureless sintered (NPS) process, which process is the continuous process of nitridation reaction process combined with pressureless sintering. Mechanical properties of silicon nitride prepared by NPS process with sintering additives of 5wt% Y2O3, 5wt% Al2O3 and 20wt% Si show high strength, >500 MPa, high hardness, 12.6 GPa, and superior damage tolerances with high fracture toughness, 9.8 MPam1/2.
Style APA, Harvard, Vancouver, ISO itp.
27

Kusunose, Takafumi, Tohru Sekino, Yong-Ho Choa i Koichi Niihara. "Machinability of Silicon Nitride/Boron Nitride Nanocomposites". Journal of the American Ceramic Society 85, nr 11 (20.12.2004): 2689–95. http://dx.doi.org/10.1111/j.1151-2916.2002.tb00515.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Gogotsi, Yu G., i G. Grathwohl. "Creep of silicon nitride-titanium nitride composites". Journal of Materials Science 28, nr 16 (1993): 4279–87. http://dx.doi.org/10.1007/bf01154933.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Wei, Jun Cong, Jun Bo Tu i Jian Cao. "Effect of Silicon on Molten Iron Corrosion Resistance of Corundum-Silicon Nitride Composites". Advanced Materials Research 284-286 (lipiec 2011): 210–13. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.210.

Pełny tekst źródła
Streszczenie:
Molten iron corrosion resistance of silicon-corundum-silicon nitride composites were investigated using corundum, silicon nitride, clay and silicon powder as the main starting materials by static crucible method. The corrosion mechanism of the composites was analyzed by means of scanning electron microscope (SEM with EDS). The results revealed that corundum-silicon nitride composites possessed good molten iron corrosion behavior and the active oxidation of silicon nitride was the main reason for loose structure of the corroded specimen; The composites produced a dense layer by addition of silicon, which made superior molten iron corrosion resistance behavior.
Style APA, Harvard, Vancouver, ISO itp.
30

Datye, A. K., S. S. Tsao i D. R. Myers. "Microstructure of buried nitride films in silicon formed by implanted nitrogen". Proceedings, annual meeting, Electron Microscopy Society of America 44 (sierpień 1986): 734–35. http://dx.doi.org/10.1017/s0424820100145042.

Pełny tekst źródła
Streszczenie:
High fluence ion implantation of nitrogen ions in silicon is currently of great interest in the formation of silicon on insulator (SOI) structures. After ion implantation, the single crystal silicon water usually exhibits a highly defective surface layer followed by an amorphous layer corresponding to the peak of the nitrogen implant profile. Annealing the sample at ∽ 1200 C yields a buried layer of silicon nitride underneath a top layer of single crystal silicon. The Quality of the single crystal silicon, buried nitride and the silicon/silicon nitride interface is of paramount importance from the standpoint of device design. We have used high resolution cross section TEM to examine the Si/nitride interface and the buried nitride layer.
Style APA, Harvard, Vancouver, ISO itp.
31

Xu, Li Jun, He Ming Zhang, Hui Yong Hu, Xiao Bo Xu i Jian Li Ma. "The Study of Direct Tunneling Current in Strained MOS Device with Silicon Nitride Stack Gate Dielectric". Applied Mechanics and Materials 110-116 (październik 2011): 5442–46. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.5442.

Pełny tekst źródła
Streszczenie:
As the size of MOS device scaled down to sub 100nm, the direct tunneling current of gate oxide increases more and more. Using silicon nitride as gate dielectric can solve this problem effectively in some time due to the dielectric constant of silicon nitride is larger than silica’s.This paper derived the dielectric constant of silicon nitride stack gate dielectric,and simulated the direct tunneling current of strained MOS device with silica and silicon nitride gate dielectric through device simulation software ISE TCAD10.0,studied the direct tunneling current of strained MOS device with silicon nitride stack gate dielectric change with the variation of some parameters and the application limit of silicon nitride material.
Style APA, Harvard, Vancouver, ISO itp.
32

Wang, Pengfei, Songhua Li, Yuhou Wu, Yu Zhang, Chao Wei i Yonghua Wang. "Research on Crack Propagation Mechanism of Silicon Nitride Ceramic Ball Bearing Channel Surface Based on Rolling Friction Experiment". Applied Sciences 14, nr 2 (12.01.2024): 674. http://dx.doi.org/10.3390/app14020674.

Pełny tekst źródła
Streszczenie:
The application feedback on existing silicon nitride ceramic bearings and RCF experimental research all indicate that the primary failure mode of silicon nitride ceramic bearings is material spalling on the contact surface. Spalling failure occurs due to the initiation and propagation of cracks under rolling contact. However, silicon nitride ceramic bearings, owing to their unique manufacturing method, inevitably exhibit defects and cracks. Therefore, as silicon nitride ceramic bearings are increasingly prevalent, reducing the probability of spalling failure is crucial for extending their service life. This can only be achieved by gaining a clear understanding of the crack initiation and expansion mechanisms in silicon nitride ceramic bearings. This paper is based on silicon nitride rolling friction experiments. It involves the joint simulation of Franc3D-V8.4 and ABAQUS2020, wherein the crack front SIFs are calculated for each load contact position of the surface crack on the silicon nitride ceramic bearing ring during cyclic movement. The study also delves into the determination of the maximum effective stress intensity factors and explores the influence of the initial crack depth on the cycle life and direction of crack propagation. The research yields several valuable conclusions. The findings of this research offer theoretical guidance for formulating grinding technologies for silicon nitride rings and adjusting and controlling working parameters of silicon nitride ceramic ball bearings. These insights are crucial for enhancing the reliability and longevity of silicon nitride ceramic bearings in practical applications.
Style APA, Harvard, Vancouver, ISO itp.
33

DesOrmeaux, J. P. S., J. D. Winans, S. E. Wayson, T. R. Gaborski, T. S. Khire, C. C. Striemer i J. L. McGrath. "Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates". Nanoscale 6, nr 18 (2014): 10798–805. http://dx.doi.org/10.1039/c4nr03070b.

Pełny tekst źródła
Streszczenie:
Free standing ultrathin nanoporous silicon nitride membranes are fabricated on a wafer scale by transferring the pores from porous nanocrystalline silicon into a silicon nitride film by reactive ion etch.
Style APA, Harvard, Vancouver, ISO itp.
34

Zhao, Yi, Xiao Ying Lv, Zheng Lin Jiang, Xia Li, Yan Huang i Zhi Gong Wang. "Silicon Nitride Surface Modification and Cell Adhesion". Materials Science Forum 610-613 (styczeń 2009): 1022–25. http://dx.doi.org/10.4028/www.scientific.net/msf.610-613.1022.

Pełny tekst źródła
Streszczenie:
Silicon microelectrode arrays (Si MEAs) have great potential in recording of neural activity; the biocompatibility of silicon nitride has gained much attention as a part of Si MEAs. In this study, we used alternating polycations, polyethyleneimine (PEI), and polyanions, gelatin, to fabricate multilayer films built up by LbL deposition on silicon nitride wafers. Then the samples surfaces were characterized by contact angle system and atomic force microscopy (AFM). The amount of proteins adsorbed on silicon nitride and modified silicon nitride were measured by a modified Coomassie brilliant blue (CBB) protein assay. Cell culture results showed that the modified silicon nitride could increase the adhesion ability of the hippocampal neurons.
Style APA, Harvard, Vancouver, ISO itp.
35

Yurkov, Andrey. "Silicon Carbide–Silicon Nitride Refractory Materials: Part 1 Materials Science and Processing". Processes 11, nr 7 (17.07.2023): 2134. http://dx.doi.org/10.3390/pr11072134.

Pełny tekst źródła
Streszczenie:
Silicon carbide and silicon nitride materials were intensively studied in the end of the past century, yet some aspects of its physical chemistry require investigation. The strength characteristics of Si3N4-SiC refractories are moderate; however, these materials sometimes demonstrate “stress–strain” behavior, more typical for composite materials than for the brittle ceramics. These materials may be considered to be ceramic composites because they consist of big grains of silicon carbide surrounded by small grains of silicon nitride, with strict interfaces between them. There is no direct certainty whether Si3N4-SiC compositions may be called composite materials or brittle ceramic materials from the viewpoint of mechanics and strength. The balance of α/β modifications of silicon nitride in Si3N4-SiC composite material and, the occurrence and the role of silicon oxynitride Si2ON2 are also a matter of scientific interest in processing of Si3N4-SiC composite material. The same may be said about the particles of silicon nitride between the grains of silicon carbide—there is no direct understanding whether silicon nitride grains will be isometric grains or needle-like crystals.
Style APA, Harvard, Vancouver, ISO itp.
36

Liu, Jian, Kai Liu, Hong Sheng Wang, Fang Gao i Rong Liao. "Preparation of Silicon Nitride Porous Ceramics". Key Engineering Materials 512-515 (czerwiec 2012): 824–27. http://dx.doi.org/10.4028/www.scientific.net/kem.512-515.824.

Pełny tekst źródła
Streszczenie:
A silicon nitride porous ceramics having excellent mechanical strength and dielectric properties can be employed as a wave-transparent material. The silicon nitride porous ceramic contains a plurality of silicon nitride crystal grains with pores formed in grain boundary which forms a three-dimensional network structure. The properties of the silicon nitride porous ceramics was studied , the porous ceramics was prepared by different process parameters, including the pressure of cold isostatic pressing, temperature of sintering and sintering atmosphere, etc.; A high porosity(>50%), high strength(>120MPa), low dielectric properties(ε<3.2) silicon nitride ceramic can be prepared by appropriate process parameters.
Style APA, Harvard, Vancouver, ISO itp.
37

Gan, Zhenghao, Changzheng Wang i Zhong Chen. "Material Structure and Mechanical Properties of Silicon Nitride and Silicon Oxynitride Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition". Surfaces 1, nr 1 (30.08.2018): 59–72. http://dx.doi.org/10.3390/surfaces1010006.

Pełny tekst źródła
Streszczenie:
Silicon nitride and silicon oxynitride thin films are widely used in microelectronic fabrication and microelectromechanical systems (MEMS). Their mechanical properties are important for MEMS structures; however, these properties are rarely reported, particularly the fracture toughness of these films. In this study, silicon nitride and silicon oxynitride thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) under different silane flow rates. The silicon nitride films consisted of mixed amorphous and crystalline Si3N4 phases under the range of silane flow rates investigated in the current study, while the crystallinity increased with silane flow rate in the silicon oxynitride films. The Young’s modulus and hardness of silicon nitride films decreased with increasing silane flow rate. However, for silicon oxynitride films, Young’s modulus decreased slightly with increasing silane flow rate, and the hardness increased considerably due to the formation of a crystalline silicon nitride phase at the high flow rate. Overall, the hardness, Young modulus, and fracture toughness of the silicon nitride films were greater than the ones of silicon oxynitride films, and the main reason lies with the phase composition: the SiNx films were composed of a crystalline Si3N4 phase, while the SiOxNy films were dominated by amorphous Si–O phases. Based on the overall mechanical properties, PECVD silicon nitride films are preferred for structural applications in MEMS devices.
Style APA, Harvard, Vancouver, ISO itp.
38

Zhang, Ke, Qiang Zhang, Peng Fei Wang, Ling Bai, Wei Ping Shen i Chang Chun Ge. "Silicon Nitride/Boron Nitride Composite by Combustion Synthesis". Materials Science Forum 561-565 (październik 2007): 531–34. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.531.

Pełny tekst źródła
Streszczenie:
Machinable silicon nitride/ hexahedral boron nitride (Si3N4/h-BN) composites were in-situ synthesized in a nitrogen (N2) atmosphere by means of combustion synthesis gas-solid reaction with silicon (Si) powder and h-BN as raw materials. The effect of the volume fraction of h-BN on the machinable properties of Si3N4/BN composite was studied. The results show that Si powder was fully nitrified and no residual Si was found. Microstructures by a scanning electron microscopy (SEM) show Columnar crystals of β-Si3N4 are the main phase and acicular crystals of h-BN disperse β-Si3N4 intergranular. With the increasing of the volume content of h-BN, the machinability of the composite increases, but the bending strength of composite decreases firstly and then increases. The lowest bending strength is 84.96MPa at 25% volume fraction of h-BN.
Style APA, Harvard, Vancouver, ISO itp.
39

Iqbal, A., W. B. Jackson, C. C. Tsai, J. W. Allen i C. W. Bates. "Electronic structure of silicon nitride and amorphous silicon/silicon nitride band offsets by electron spectroscopy". Journal of Applied Physics 61, nr 8 (15.04.1987): 2947–54. http://dx.doi.org/10.1063/1.337842.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Ershova, Natalia I., i Irina Yu Kelina. "High-temperature wear-resistant materials based on silicon nitride". Epitoanyag - Journal of Silicate Based and Composite Materials 61, nr 2 (2009): 34–37. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2009.6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Buljan, S. T., i J. G. Baldoni. "Silicon Nitride-Based Composites". Materials Science Forum 47 (styczeń 1991): 249–66. http://dx.doi.org/10.4028/www.scientific.net/msf.47.249.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Riley, Frank L. "Reaction Bonded Silicon Nitride". Materials Science Forum 47 (styczeń 1991): 70–83. http://dx.doi.org/10.4028/www.scientific.net/msf.47.70.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Ismail, M. S., R. W. BOWER, J. L. Veteran i O. J. Marsh. "Silicon nitride direct bonding". Electronics Letters 26, nr 14 (1990): 1045. http://dx.doi.org/10.1049/el:19900677.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

MELENDEZMARTINEZ, J. "Creep of silicon nitride". Progress in Materials Science 49, nr 1 (2004): 19–107. http://dx.doi.org/10.1016/s0079-6425(03)00020-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Winchester, K., S. M. R. Spaargaren i J. M. Dell. "Transferable silicon nitride microcavities". Microelectronics Journal 31, nr 7 (lipiec 2000): 523–29. http://dx.doi.org/10.1016/s0026-2692(00)00025-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Yang, Weiyou, Fengmei Gao, Huatao Wang, Zhipeng Xie i Linan An. "Asymmetric Silicon Nitride Nanodendrites". Crystal Growth & Design 8, nr 8 (sierpień 2008): 2606–8. http://dx.doi.org/10.1021/cg701276t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Yang, Weiyou, Xiaomin Cheng, Huatao Wang, Zhipeng Xie, Feng Xing i Linan An. "Bundled Silicon Nitride Nanorings". Crystal Growth & Design 8, nr 11 (5.11.2008): 3921–23. http://dx.doi.org/10.1021/cg800708z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Tong, Hien D., Henri V. Jansen, Vishwas J. Gadgil, Cazimir G. Bostan, Erwin Berenschot, Cees J. M. van Rijn i Miko Elwenspoek. "Silicon Nitride Nanosieve Membrane". Nano Letters 4, nr 2 (luty 2004): 283–87. http://dx.doi.org/10.1021/nl0350175.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Gao, Hui, Reto Luginbühl i Hans Sigrist. "Bioengineering of silicon nitride". Sensors and Actuators B: Chemical 38, nr 1-3 (styczeń 1997): 38–41. http://dx.doi.org/10.1016/s0925-4005(96)02125-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Yang, Weiyou, Fengmei Gao, Huatao Wang, Zhipeng Xie i Linan An. "Asymmetric Silicon Nitride Nanodendrites". Crystal Growth & Design 9, nr 4 (kwiecień 2009): 2020. http://dx.doi.org/10.1021/cg900152q.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii