Gotowa bibliografia na temat „Signal processing- models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Signal processing- models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Signal processing- models"
Culver, R. Lee, i H. John Camin. "Sonar signal processing using probabilistic signal and ocean environmental models". Journal of the Acoustical Society of America 124, nr 6 (grudzień 2008): 3619–31. http://dx.doi.org/10.1121/1.3006379.
Pełny tekst źródłaPagès-Zamora, Alba, i Miguel A. Lagunas. "Fourier models for non-linear signal processing". Signal Processing 76, nr 1 (lipiec 1999): 1–16. http://dx.doi.org/10.1016/s0165-1684(98)00243-6.
Pełny tekst źródłaSottek, Roland, i Klaus Genuit. "Models of signal processing in human hearing". AEU - International Journal of Electronics and Communications 59, nr 3 (czerwiec 2005): 157–65. http://dx.doi.org/10.1016/j.aeue.2005.03.016.
Pełny tekst źródłaLiu, Keying, Rui Li i Fasong Wang. "Blind Signal Processing models and methods for Foetal Electrocardiogram signals extraction". International Journal of Biomedical Engineering and Technology 7, nr 3 (2011): 225. http://dx.doi.org/10.1504/ijbet.2011.043296.
Pełny tekst źródłaRogozinsky, G., M. Chesnokov i A. Kutlyiarova. "Some New Mathematical Models of Synthesized Sound Signals". Proceedings of Telecommunication Universities 8, nr 2 (30.06.2022): 76–81. http://dx.doi.org/10.31854/1813-324x-2022-8-2-76-81.
Pełny tekst źródłaWillsky, A. S. "Multiresolution Markov models for signal and image processing". Proceedings of the IEEE 90, nr 8 (sierpień 2002): 1396–458. http://dx.doi.org/10.1109/jproc.2002.800717.
Pełny tekst źródłaSchooley, Larry C. "Charge-coupled device signal processing models and comparisons". Journal of Electronic Imaging 2, nr 2 (1.04.1993): 100. http://dx.doi.org/10.1117/12.138355.
Pełny tekst źródłaNakajima, Jouchi, i Mike West. "Dynamic network signal processing using latent threshold models". Digital Signal Processing 47 (grudzień 2015): 5–16. http://dx.doi.org/10.1016/j.dsp.2015.04.008.
Pełny tekst źródłaArik, Sercan O., Joseph M. Kahn i Keang-Po Ho. "MIMO Signal Processing for Mode-Division Multiplexing: An overview of channel models and signal processing architectures". IEEE Signal Processing Magazine 31, nr 2 (marzec 2014): 25–34. http://dx.doi.org/10.1109/msp.2013.2290804.
Pełny tekst źródłaFisher, B., i N. Bershad. "ALE behavior for two sinusoidal signal models". IEEE Transactions on Acoustics, Speech, and Signal Processing 33, nr 3 (czerwiec 1985): 658–65. http://dx.doi.org/10.1109/tassp.1985.1164590.
Pełny tekst źródłaRozprawy doktorskie na temat "Signal processing- models"
Xu, Luzhou. "Growth curve models in signal processing applications". [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0015020.
Pełny tekst źródłaLynch, Michael Richard. "Adaptive techniques in signal processing and connectionist models". Thesis, University of Cambridge, 1990. https://www.repository.cam.ac.uk/handle/1810/244884.
Pełny tekst źródłaRao, Tandhoni. "Noncausal methods and models for image". Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/13344.
Pełny tekst źródłaBengtsson, Mats. "Antenna array signal processing for high rank data models". Doctoral thesis, KTH, Signaler, sensorer och system, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2903.
Pełny tekst źródłaNoland, Katy C. "Computational tonality estimation : signal processing and hidden Markov models". Thesis, Queen Mary, University of London, 2009. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8492.
Pełny tekst źródłaSaid, Maya Rida 1976. "Signal processing in biological cells : proteins, networks, and models". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/30165.
Pełny tekst źródłaIncludes bibliographical references (p. 202-210).
This thesis introduces systematic engineering principles to model, at different levels of abstraction the information processing in biological cells in order to understand the algorithms implemented by the signaling pathways that perform the processing. An example of how to emulate one of these algorithms in other signal processing contexts is also presented. At a high modeling level, the focus is on the network topology rather than the dynamical properties of the components of the signaling network. In this regime, we examine and analyze the distribution and properties of the network graph. Specifically, we present a global network investigation of the genotype/phenotype data-set recently developed for the yeast Saccharomyces cerevisiae from exposure to DNA damaging agents, enabling explicit study of how protein-protein interaction network characteristics may be associated with phenotypic functional effects. The properties of several functional yeast networks are also compared and a simple method to combine gene expression data with network information is proposed to better predict pathophysiological behavior. At a low level of modeling, the thesis introduces a new framework for modeling cellular signal processing based on interacting Markov chains. This framework provides a unified way to simultaneously capture the stochasticity of signaling networks in individual cells while computing a deterministic solution which provides average behavior. The use of this framework is demonstrated on two classical signaling networks: the mitogen activated protein kinase cascade and the bacterial chemotaxis pathway. The prospects of using cell biology as a metaphor for signal processing are also considered in a preliminary way by presenting a surface mapping algorithm based on bacterial chemotaxis.
by Maya Rida Said.
Sc.D.
Marmin, Arthur. "Rational models optimized exactly for solving signal processing problems". Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG017.
Pełny tekst źródłaA wide class of nonconvex optimization problem is represented by rational optimization problems. The latter appear naturally in many areas such as signal processing or chemical engineering. However, finding the global optima of such problems is intricate. A recent approach called Lasserre's hierarchy provides a sequence of convex problems that has the theoretical guarantee to converge to the global optima. Nevertheless, this approach is computationally challenging due to the high dimensions of the convex relaxations. In this thesis, we tackle this challenge for various signal processing problems.First, we formulate the reconstruction of sparse signals as a rational optimization problem. We show that the latter has a structure that we wan exploit in order to reduce the complexity of the associated relaxations. We thus solve several practical problems such as the reconstruction of chromatography signals. We also extend our method to the reconstruction of various types of signal corrupted by different noise models.In a second part, we study the convex relaxations generated by our problems which take the form of high-dimensional semi-definite programming problems. We consider several algorithms mainly based on proximal operators to solve those high-dimensional problems efficiently.The last part of this thesis is dedicated to the link between polynomial optimization and symmetric tensor decomposition. Indeed, they both can be seen as an instance of the moment problem. We thereby propose a detection method as well as a decomposition algorithm for symmetric tensors based on the tools used in polynomial optimization. In parallel, we suggest a robust extraction method for polynomial optimization based on tensor decomposition algorithms. Those methods are illustrated on signal processing problems
Archer, Cynthia. "A framework for representing non-stationary data with mixtures of linear models /". Full text open access at:, 2002. http://content.ohsu.edu/u?/etd,585.
Pełny tekst źródłaLiu, Li. "Ground vehicle acoustic signal processing based on biological hearing models". College Park, Md. : University of Maryland, 1999. http://techreports.isr.umd.edu/reports/1999/MS%5F99-6.pdf.
Pełny tekst źródłaThesis research directed by Institute for Systems Research. "M.S. 99-6." Includes bibliographical references (leaves 75-78). Available also online as a PDF file via the World Wide Web.
Boman, Katarina. "Low-angle estimation : Models, methods and bounds". Licentiate thesis, Uppsala universitet, Avdelningen för systemteknik, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-85998.
Pełny tekst źródłaKsiążki na temat "Signal processing- models"
Biomedical signal processing. San Diego: Academic Press, 1994.
Znajdź pełny tekst źródłaBiomedical signal processing and signal modeling. New York: Wiley, 2001.
Znajdź pełny tekst źródłaBruce, Eugene N. Biomedical signal processing and signal modeling. New York: Wiley, 2001.
Znajdź pełny tekst źródłaDarolles, Serge, Patrick Duvaut i Emmanuelle Jay. Multi-Factor Models and Signal Processing Techniques. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118577387.
Pełny tekst źródłaAdaptive signal models: Theory, algorithms, and audio applications. Boston: Kluwer Academic Publishers, 1998.
Znajdź pełny tekst źródłaStatistical digital signal processing and modeling. New York: John Wiley & Sons, 1996.
Znajdź pełny tekst źródłaA, Gardner William, red. Cyclostationarity in communications and signal processing. New York: IEEE Press, 1994.
Znajdź pełny tekst źródłaSignals and systems in biomedical engineering: Signal processing and physiological systems modeling. New York: Kluwer Academic/Plenum Publishers, 2000.
Znajdź pełny tekst źródłaCerutti, Sergio, i Carlo Marchesi. Advanced methods of biomedical signal processing. Hoboken, N.J: Wiley, 2011.
Znajdź pełny tekst źródłaNaik, Ganesh R. Applications, challenges, and advancements in electromyography signal processing. Hershey PA: Medical Information Science Reference, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Signal processing- models"
Au, Whitlow W. L. "Signal Processing and Signal Processing Models". W The Sonar of Dolphins, 216–41. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-4356-4_10.
Pełny tekst źródłaNandi, Swagata, i Debasis Kundu. "Related Models". W Statistical Signal Processing, 239–57. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6280-8_11.
Pełny tekst źródłaNandi, Swagata, i Debasis Kundu. "Multidimensional Models". W Statistical Signal Processing, 163–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6280-8_8.
Pełny tekst źródłaKundu, Debasis, i Swagata Nandi. "Multidimensional Models". W Statistical Signal Processing, 101–12. India: Springer India, 2012. http://dx.doi.org/10.1007/978-81-322-0628-6_7.
Pełny tekst źródłaKundu, Debasis, i Swagata Nandi. "Related Models". W Statistical Signal Processing, 113–27. India: Springer India, 2012. http://dx.doi.org/10.1007/978-81-322-0628-6_8.
Pełny tekst źródłaDau, Torsten. "Auditory Processing Models". W Handbook of Signal Processing in Acoustics, 175–96. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-30441-0_12.
Pełny tekst źródłaColburn, H. Steven, Yi Zhou i Vasant Dasika. "Inhibition in models of coincidence detection". W Auditory Signal Processing, 354–60. New York, NY: Springer New York, 2005. http://dx.doi.org/10.1007/0-387-27045-0_44.
Pełny tekst źródłaNandi, Swagata, i Debasis Kundu. "Real Data Example Using Sinusoidal-Like Models". W Statistical Signal Processing, 143–61. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6280-8_7.
Pełny tekst źródłaButler, John L., i Charles H. Sherman. "Transducer Models". W Modern Acoustics and Signal Processing, 91–152. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39044-4_3.
Pełny tekst źródłaChaigne, Antoine, i Jean Kergomard. "Continuous Models". W Modern Acoustics and Signal Processing, 3–75. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3679-3_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Signal processing- models"
Barnes, C. W., E. J. Pisa i O. Ishrak. "Signal Processing Models In Medical Ultrasound". W Pattern Recognition and Acoustical Imaging, redaktor Leonard A. Ferrari. SPIE, 1987. http://dx.doi.org/10.1117/12.940242.
Pełny tekst źródłaModi, Kirtan N., Eul-Shik Hong i Bhaskar Bhattacharya. "Interactive models for teaching digital signal processing". W 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop. IEEE, 2009. http://dx.doi.org/10.1109/dsp.2009.4785928.
Pełny tekst źródłaNihtila, Markku. "Discrete Signal Processing with Flat System Models". W 2007 IEEE International Conference on Signal Processing and Communications. IEEE, 2007. http://dx.doi.org/10.1109/icspc.2007.4728399.
Pełny tekst źródłaOtomanski, Przemyslaw. "Signal processing models of the laser diode". W Laser Technology V, redaktorzy Wieslaw L. Wolinski i Michal Malinowski. SPIE, 1997. http://dx.doi.org/10.1117/12.280515.
Pełny tekst źródłaBestugin, A. R., A. F. Kryachko, S. S. Poddubniy i V. N. Kayatkin. "Radiated signal models". W 2018 Systems of Signals Generating and Processing in the Field of on Board Communications. IEEE, 2018. http://dx.doi.org/10.1109/sosg.2018.8350572.
Pełny tekst źródłaThang, Nguyen Duc, Chen Lihui i Chan Chee Keong. "An outlier-aware data clustering algorithm in mixture models". W Signal Processing (ICICS). IEEE, 2009. http://dx.doi.org/10.1109/icics.2009.5397571.
Pełny tekst źródłaWang, Chensheng, Joris S. M. Vergeest, Pieter J. Stappers i Willem F. Bronsvoort. "Freeform Feature Retrieval by Signal Processing". W ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57061.
Pełny tekst źródłaSanthanam, Balu. "Session MA8b1: Models for signal and image processing". W 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers. IEEE, 2009. http://dx.doi.org/10.1109/acssc.2009.5470085.
Pełny tekst źródłaBayati, Mohsen. "Session MA3b: Graphical models in signal processing I". W 2011 45th Asilomar Conference on Signals, Systems and Computers. IEEE, 2011. http://dx.doi.org/10.1109/acssc.2011.6189950.
Pełny tekst źródłaIhler, Alex. "Session MP3a: Graphical models in signal processing II". W 2011 45th Asilomar Conference on Signals, Systems and Computers. IEEE, 2011. http://dx.doi.org/10.1109/acssc.2011.6190026.
Pełny tekst źródłaRaporty organizacyjne na temat "Signal processing- models"
Baraniuk, Richard G. Multiscale Statistical Models for Signal and Image Processing. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2004. http://dx.doi.org/10.21236/ada425177.
Pełny tekst źródłaShubitidze, Fridon. A Complex Approach to UXO Discrimination: Combining Advanced EMI Forward Models and Statistical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2012. http://dx.doi.org/10.21236/ada578937.
Pełny tekst źródłaBurnett, G. C. Damage Detection and Identification of Finite Element Models Using State-Space Based Signal Processing a Summation of Work Completed at the Lawrence Livermore National Laboratory February 1999 to April 2000. Office of Scientific and Technical Information (OSTI), kwiecień 2000. http://dx.doi.org/10.2172/793960.
Pełny tekst źródłaChambers, D. Signal Processing Model for Radiation Transport. Office of Scientific and Technical Information (OSTI), lipiec 2008. http://dx.doi.org/10.2172/945821.
Pełny tekst źródłaBai, Z. D., P. R. Krishnaiah i L. C. Zhao. Signal Processing Using Model Selection Methods,. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1986. http://dx.doi.org/10.21236/ada167318.
Pełny tekst źródłaRodgers, A., D. Harris i M. Pasyanos. A Model-Based Signal Processing Approach to Nuclear Explosion Monitoring. Office of Scientific and Technical Information (OSTI), marzec 2007. http://dx.doi.org/10.2172/908120.
Pełny tekst źródłaEdelblute, David J. Array Processing That Uses a Normal-Mode Model for Signal Representation. Fort Belvoir, VA: Defense Technical Information Center, maj 1988. http://dx.doi.org/10.21236/ada198031.
Pełny tekst źródłaLing, Hao. Application of Model-Based Signal Processing Methods to Computational Electromagnetics Simulators. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2000. http://dx.doi.org/10.21236/ada389286.
Pełny tekst źródłaCandy, J. V., B. R. Illingworth, K. W. Craft i J. E. Case. Real-time Signal Processing for Sounding Rocket Modal Frequency Estimation. Office of Scientific and Technical Information (OSTI), marzec 2019. http://dx.doi.org/10.2172/1548320.
Pełny tekst źródłaCandy, J., K. Fisher i B. Fix. Model-Based Ultrasonic Signal Processing for the Nondestructive Evaluation of Additive Manufacturing Components. Office of Scientific and Technical Information (OSTI), styczeń 2021. http://dx.doi.org/10.2172/1762858.
Pełny tekst źródła