Artykuły w czasopismach na temat „Si quantum well”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Si quantum well.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Si quantum well”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Kuo, P. S., C. Y. Peng, C. H. Lee, Y. Y. Shen, H. C. Chang i C. W. Liu. "Si/Si0.2Ge0.8/Si quantum well Schottky barrier diodes". Applied Physics Letters 94, nr 10 (9.03.2009): 103512. http://dx.doi.org/10.1063/1.3099337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ren, Shang Yuan, John D. Dow i Jun Shen. "Criteria for Si quantum‐well luminescence". Journal of Applied Physics 73, nr 12 (15.06.1993): 8458–62. http://dx.doi.org/10.1063/1.353419.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Miller, David, R. K. Schaevitz, J. E. Roth, Shen Ren i Onur Fidaner. "Ge Quantum Well Modulators on Si". ECS Transactions 16, nr 10 (18.12.2019): 851–56. http://dx.doi.org/10.1149/1.2986844.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Qasaimeh, O., i P. Bhattacharya. "SiGe-Si quantum-well electroabsorption modulators". IEEE Photonics Technology Letters 10, nr 6 (czerwiec 1998): 807–9. http://dx.doi.org/10.1109/68.681491.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Robbins, D. J., M. B. Stanaway, W. Y. Leong, J. L. Glasper i C. Pickering. "Si1?XGeX/Si quantum well infrared photodetectors". Journal of Materials Science: Materials in Electronics 6, nr 5 (październik 1995): 363–67. http://dx.doi.org/10.1007/bf00125893.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rölver, R., B. Berghoff, D. L. Bätzner, B. Spangenberg i H. Kurz. "Lateral Si∕SiO2 quantum well solar cells". Applied Physics Letters 92, nr 21 (26.05.2008): 212108. http://dx.doi.org/10.1063/1.2936308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lee, J., S. H. Li, J. Singh i P. K. Bhattacharya. "Low-Temperature photoluminescence of SiGe/Si disordered multiple quantum wells and quantum well wires". Journal of Electronic Materials 23, nr 8 (sierpień 1994): 831–33. http://dx.doi.org/10.1007/bf02651380.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sasaki, Kohei, Ryuichi Masutomi, Kiyohiko Toyama, Kentarou Sawano, Yasuhiro Shiraki i Tohru Okamoto. "Well-width dependence of valley splitting in Si/SiGe quantum wells". Applied Physics Letters 95, nr 22 (30.11.2009): 222109. http://dx.doi.org/10.1063/1.3270539.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

ABRAMOV, ARNOLD. "RESONANT DONOR STATES IN QUANTUM WELL". Modern Physics Letters B 25, nr 02 (20.01.2011): 89–96. http://dx.doi.org/10.1142/s0217984911025493.

Pełny tekst źródła
Streszczenie:
A method of calculation of donor impurity states in a quantum well is developed. The used techniques have made it possible to find the binding energy both of ground and excited impurity states attached to each QW subband. The positions of the resonant states in 2D continuum are determined as poles of corresponding wave functions. As a result of such an approach the identification of resonant states in 2D continuum is avoided, introducing special criterions. The calculated dependences of binding energies versus impurity position are presented for various widths of Si / Si 1-x Ge x quantum wells.
Style APA, Harvard, Vancouver, ISO itp.
10

Nayak, D. K., J. C. S. Woo, J. S. Park, K. L. Wang i K. P. MacWilliams. "Hole confinement in a Si/GeSi/Si quantum well on SIMOX". IEEE Transactions on Electron Devices 43, nr 1 (1996): 180–82. http://dx.doi.org/10.1109/16.477614.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Sun, Po-Hsing, Shu-Tong Chang, Yu-Chun Chen i Hongchin Lin. "A SiGe/Si multiple quantum well avalanche photodetector". Solid-State Electronics 54, nr 10 (październik 2010): 1216–20. http://dx.doi.org/10.1016/j.sse.2010.05.023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Karunasiri, R. P. G., J. S. Park i K. L. Wang. "Si1−xGex/Si multiple quantum well infrared detector". Applied Physics Letters 59, nr 20 (11.11.1991): 2588–90. http://dx.doi.org/10.1063/1.105911.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Liu, Fei, Song Tong, Hyung-jun Kim i Kang L. Wang. "Photoconductive gain of SiGe/Si quantum well photodetectors". Optical Materials 27, nr 5 (luty 2005): 864–67. http://dx.doi.org/10.1016/j.optmat.2004.08.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Prunnila, Mika, i Jouni Ahopelto. "Two sub-band conductivity of Si quantum well". Physica E: Low-dimensional Systems and Nanostructures 32, nr 1-2 (maj 2006): 281–84. http://dx.doi.org/10.1016/j.physe.2005.12.093.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Aleshkin, V. Ya, V. I. Gavrilenko i D. V. Kozlov. "Shallow acceptors in Si/SiGe quantum well heterostructures". physica status solidi (c), nr 2 (luty 2003): 687–89. http://dx.doi.org/10.1002/pssc.200306183.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Terashima, Koichi, Michio Tajima, Nobuyuki Ikarashi, Taeko Niino i Toru Tatsumi. "Photoluminescence of Si1-xGex/Si Quantum Well Structures". Japanese Journal of Applied Physics 30, Part 1, No. 12B (30.12.1991): 3601–5. http://dx.doi.org/10.1143/jjap.30.3601.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

TANG, Y. S., C. M. SOTOMAYOR TORRES, C. D. W. WILKINSON, D. W. SMITH, T. E. WHALL i E. H. C. PARKER. "Photoluminescence from Si/Si0.87Ge0.13 multiple quantum well wires". Le Journal de Physique IV 03, nr C5 (październik 1993): 119–22. http://dx.doi.org/10.1051/jp4:1993521.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Tang, Y. S., C. D. W. Wilkinson, C. M. Sotomayor Torres, D. W. Smith, T. E. Whall i E. H. C. Parker. "Optical properties of Si/Si0.87Ge0.13multiple quantum well wires". Applied Physics Letters 63, nr 4 (26.07.1993): 497–99. http://dx.doi.org/10.1063/1.109984.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Lai, K., W. Pan, D. C. Tsui, S. Lyon, M. Mühlberger i F. Schäffler. "Quantum Hall ferromagnetism in a two-valley strained Si quantum well". Physica E: Low-dimensional Systems and Nanostructures 34, nr 1-2 (sierpień 2006): 176–78. http://dx.doi.org/10.1016/j.physe.2006.03.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Antonova, I. V., L. L. Golik, M. S. Kagan, V. I. Polyakov, A. I. Rukavischnikov, N. M. Rossukanyi i J. Kolodzey. "Quantum Well Related Conductivity and Deep Traps in SiGe/Si Structures". Solid State Phenomena 108-109 (grudzień 2005): 489–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.108-109.489.

Pełny tekst źródła
Streszczenie:
Electrical transport and traps in vertical SiGe/Si QW structures of low background doping level are studied in the presented report. Temperature activation of holes from the quantum well was found to determine the vertical current through Si/SiGe/Si structures at T > 160 K. At lower temperatures (T < 130 K), the current mechanism is attributed to a thermally activated tunneling of holes from quantum well. Deep traps are observed in the Si/SiGe/Si structures in high concentration (1011 – 1012 cm-2). Traps are most likely assistance in the current in the vertical Si/SiGe/Si structures as recombination centers near the QW.
Style APA, Harvard, Vancouver, ISO itp.
21

Antonova, I. V., E. P. Neustroev, S. A. Smagulova, M. S. Kagan, P. S. Alekseev, S. K. Ray, N. Sustersic i J. Kolodzey. "Confinement Levels in Passivated SiGe/Si Quantum Well Structures". Solid State Phenomena 156-158 (październik 2009): 541–46. http://dx.doi.org/10.4028/www.scientific.net/ssp.156-158.541.

Pełny tekst źródła
Streszczenie:
The set of quantum confinement levels in SiGe quantum wells (QW) was observed in the temperature range from 80 to 300 K by means of charge deep-level transient spectroscopy (Q-DLTS) and transport measurements. These observations proved possible due to a passivation of structure surface with organic monolayer deposition. Si/SiGe/Si structures with different Ge contents in SiGe layer were studied. The confined levels in passivated structures became apparent through DLTS measurements as various activation energies in temperature dependence of the rate of carrier emission from QW. It was found that the recharging of SiGe QWs and carrier emission accomplish due to thermo-stimulated tunneling. The steps in the current-voltage characteristics originated from direct tunneling via the confined states were found to determine the current flow at high fields.
Style APA, Harvard, Vancouver, ISO itp.
22

Ray, S. K., G. S. Kar i S. K. Banerjee. "Characteristics of UHVCVD grown Si/Si1−x−yGexCy/Si quantum well heterostructure". Applied Surface Science 182, nr 3-4 (październik 2001): 361–65. http://dx.doi.org/10.1016/s0169-4332(01)00449-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Wen-qin, Cheng, Cui Qian, Cai Li-hong, Hu Qiang i Zhou Jun-ming. "Electroluminescence spectra of Ge x Si 1- x /Si single quantum well". Acta Physica Sinica (Overseas Edition) 4, nr 11 (listopad 1995): 856–58. http://dx.doi.org/10.1088/1004-423x/4/11/009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Huda, M. Q., A. R. Peaker, J. H. Evans-Freeman, D. C. Houghton i W. P. Gillin. "Strong luminescence from erbium in Si/Si1–xGex/Si quantum well structures". Electronics Letters 33, nr 13 (1997): 1182. http://dx.doi.org/10.1049/el:19970750.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Diehl, L., S. Mentese, E. Müller, D. Grützmacher, H. Sigg, T. Fromherz, J. Faist i in. "Strain compensated Si/SiGe quantum well and quantum cascade on Si0.5Ge0.5 pseudosubstrate". Physica E: Low-dimensional Systems and Nanostructures 16, nr 3-4 (marzec 2003): 315–20. http://dx.doi.org/10.1016/s1386-9477(02)00607-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Marris, D., A. Cordat, D. Pascal, A. Koster, E. Cassan, L. Vivien i S. Laval. "Design of a SiGe-Si quantum-well optical modulator". IEEE Journal of Selected Topics in Quantum Electronics 9, nr 3 (maj 2003): 747–54. http://dx.doi.org/10.1109/jstqe.2003.820404.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Corbin, E., K. B. Wong i M. Jaros. "Absorption inp-type Si-SiGe strained quantum-well structures". Physical Review B 50, nr 4 (15.07.1994): 2339–45. http://dx.doi.org/10.1103/physrevb.50.2339.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Tutor, J., i F. Comas. "Si/SiGe Quantum-Well Electron Mobility. Main Scattering Mechanisms". physica status solidi (b) 191, nr 1 (1.09.1995): 121–28. http://dx.doi.org/10.1002/pssb.2221910113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Gaggero-Sager, L. M., i R. Pérez-Alvarez. "Electronic states in B δ-doped Si quantum well". physica status solidi (b) 197, nr 1 (1.09.1996): 105–9. http://dx.doi.org/10.1002/pssb.2221970116.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Rached, D., N. Benkhettou i N. Sekkal. "Electronic properties of Si/SiGe ultrathin quantum well superlattices". physica status solidi (b) 235, nr 1 (styczeń 2003): 189–94. http://dx.doi.org/10.1002/pssb.200301356.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Hattori, K., M. Tsujishita, H. Okamoto i Y. Hamakawa. "Electroabsorption spectroscopy of amorphous Si/SiC quantum well structures". Applied Physics Letters 55, nr 8 (21.08.1989): 763–65. http://dx.doi.org/10.1063/1.101799.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Abramkin, D. S., M. O. Petrushkov, M. A. Putyato, B. R. Semyagin, E. A. Emelyanov, V. V. Preobrazhenskii, A. K. Gutakovskii i T. S. Shamirzaev. "GaAs/GaP Quantum-Well Heterostructures Grown on Si Substrates". Semiconductors 53, nr 9 (wrzesień 2019): 1143–47. http://dx.doi.org/10.1134/s1063782619090021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Holtz, P. O., B. Monemar, M. Sundaram, J. L. Merz i A. C. Gossard. "The shallow Si donor confined in a quantum well". Superlattices and Microstructures 12, nr 1 (styczeń 1992): 133–35. http://dx.doi.org/10.1016/0749-6036(92)90235-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Kil, Yeon-Ho, Hyeon Deok Yang, Jong-Han Yang, Sukill Kang, Tae Soo Jeong, Chel-Jong Choi, Taek Sung Kim i Kyu-Hwan Shim. "Optical properties of hybrid Si1−xGex/Si quantum dot/quantum well structures grown on Si by RPCVD". Materials Science in Semiconductor Processing 17 (styczeń 2014): 178–83. http://dx.doi.org/10.1016/j.mssp.2013.09.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Han, Ji Sheng, Sima Dimitrjiev, Li Wang, Alan Iacopi, Qu Shuang i Xian Gang Xu. "InGaN/GaN Multiple Quantum Well Blue LEDs on 3C-SiC/Si Substrate". Materials Science Forum 679-680 (marzec 2011): 801–3. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.801.

Pełny tekst źródła
Streszczenie:
Gallium nitrides are primarily used for their excellent light emission properties. GaN LEDs are mostly grown on foreign substrates, essentially sapphire and SiC, but more recently, also on Si substrates. In this paper, we will demonstrate that the high structural quality of InGaN/GaN multiple quantum wells can be deposited on 3C-SiC/Si (111) substrate using MOCVD. This demonstrates that 3C-SiC/Si is a promising template for the epitaxial growth of InGaN/GaN multiple quantum wells for LEDs.
Style APA, Harvard, Vancouver, ISO itp.
36

Christian, George, Menno Kappers, Fabien Massabuau, Colin Humphreys, Rachel Oliver i Philip Dawson. "Effects of a Si-doped InGaN Underlayer on the Optical Properties of InGaN/GaN Quantum Well Structures with Different Numbers of Quantum Wells". Materials 11, nr 9 (15.09.2018): 1736. http://dx.doi.org/10.3390/ma11091736.

Pełny tekst źródła
Streszczenie:
In this paper we report on the optical properties of a series of InGaN polar quantum well structures where the number of wells was 1, 3, 5, 7, 10 and 15 and which were grown with the inclusion of an InGaN Si-doped underlayer. When the number of quantum wells is low then the room temperature internal quantum efficiency can be dominated by thermionic emission from the wells. This can occur because the radiative recombination rate in InGaN polar quantum wells can be low due to the built-in electric field across the quantum well which allows the thermionic emission process to compete effectively at room temperature limiting the internal quantum efficiency. In the structures that we discuss here, the radiative recombination rate is increased due to the effects of the Si-doped underlayer which reduces the electric field across the quantum wells. This results in the effect of thermionic emission being largely eliminated to such an extent that the internal quantum efficiency at room temperature is independent of the number of quantum wells.
Style APA, Harvard, Vancouver, ISO itp.
37

Maikap, S., L. K. Bera, S. K. Ray, S. John, S. K. Banerjee i C. K. Maiti. "Electrical characterization of Si/Si1−xGex/Si quantum well heterostructures using a MOS capacitor". Solid-State Electronics 44, nr 6 (czerwiec 2000): 1029–34. http://dx.doi.org/10.1016/s0038-1101(99)00327-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Huang, Rao, Yun Du, Ailing Ji i Zexian Cao. "Time-resolved photoluminescence from Si-in-SiNx/Si-in-SiC quantum well-dot structures". Optical Materials 35, nr 12 (październik 2013): 2414–17. http://dx.doi.org/10.1016/j.optmat.2013.06.044.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Rack, M. J., T. J. Thornton, D. K. Ferry, J. Huffman i R. Westhoff. "Strained Si/SiGe quantum well MODFETs for cryogenic circuit applications". Solid-State Electronics 45, nr 7 (lipiec 2001): 1199–203. http://dx.doi.org/10.1016/s0038-1101(01)00198-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Lin, C. H., C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo i C. W. Liu. "δ-Doped MOS Ge/Si quantum dot/well infrared photodetector". Thin Solid Films 508, nr 1-2 (czerwiec 2006): 389–92. http://dx.doi.org/10.1016/j.tsf.2005.06.109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Peng, C. Y., F. Yuan, C. Y. Yu, P. S. Kuo, M. H. Lee, S. Maikap, C. H. Hsu i C. W. Liu. "Hole mobility enhancement of Si0.2Ge0.8 quantum well channel on Si". Applied Physics Letters 90, nr 1 (styczeń 2007): 012114. http://dx.doi.org/10.1063/1.2400394.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Laikhtman, B., i R. A. Kiehl. "Theoretical hole mobility in a narrow Si/SiGe quantum well". Physical Review B 47, nr 16 (15.04.1993): 10515–27. http://dx.doi.org/10.1103/physrevb.47.10515.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Salvador, A., G. Liu, W. Kim, Ö. Aktas, A. Botchkarev i H. Morkoç. "Properties of a Si doped GaN/AlGaN single quantum well". Applied Physics Letters 67, nr 22 (27.11.1995): 3322–24. http://dx.doi.org/10.1063/1.115234.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Akahane, Kouichi, Naokatsu Yamamoto, Shin-ichiro Gozu i Naoki Ohtani. "High-Quality GaSb/AlGaSb Quantum Well Grown on Si Substrate". Japanese Journal of Applied Physics 44, nr 1 (10.12.2004): L15—L17. http://dx.doi.org/10.1143/jjap.44.l15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Maine, Sylvain, Delphine Marris Morini, Laurent Vivien, Eric Cassan i Suzanne Laval. "Design Optimization of a SiGe/Si Quantum-Well Optical Modulator". Journal of Lightwave Technology 26, nr 6 (marzec 2008): 678–84. http://dx.doi.org/10.1109/jlt.2007.916589.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Liu, Jianxun, Jin Wang, Xiujian Sun, Qian Sun, Meixin Feng, Rui Zhou, Yu Zhou i in. "InGaN-Based Quantum Well Superluminescent Diode Monolithically Grown on Si". ACS Photonics 6, nr 8 (9.07.2019): 2104–9. http://dx.doi.org/10.1021/acsphotonics.9b00657.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Zingway Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai i C. W. Liu. "A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor". IEEE Electron Device Letters 24, nr 10 (październik 2003): 643–45. http://dx.doi.org/10.1109/led.2003.817870.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Zhou, W. Z., Z. M. Huang, Z. J. Qiu, T. Lin, L. Y. Shang, D. L. Li, H. L. Gao i in. "Pseudospin in Si -doped InAlAs/InGaAs/InAlAs single quantum well". Solid State Communications 142, nr 7 (maj 2007): 393–97. http://dx.doi.org/10.1016/j.ssc.2007.03.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Pidgeon, C. R., P. Murzyn, J. P. R. Wells, I. V. Bradley, Z. Ikonic, R. W. Kelsall, P. Harrison i in. "THz intersubband dynamics in p-Si/SiGe quantum well structures". Physica E: Low-dimensional Systems and Nanostructures 13, nr 2-4 (marzec 2002): 904–7. http://dx.doi.org/10.1016/s1386-9477(02)00231-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Dötsch, U., U. Gennser, C. David, G. Dehlinger, D. Grützmacher, T. Heinzel, S. Lüscher i K. Ensslin. "Single-hole transistor in a p-Si/SiGe quantum well". Applied Physics Letters 78, nr 3 (15.01.2001): 341–43. http://dx.doi.org/10.1063/1.1342040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii