Gotowa bibliografia na temat „Si Quantum Dot”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Si Quantum Dot”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Si Quantum Dot"
Porod, Wolfgang. "Quantum-Dot Devices and Quantum-Dot Cellular Automata". International Journal of Bifurcation and Chaos 07, nr 10 (październik 1997): 2199–218. http://dx.doi.org/10.1142/s0218127497001606.
Pełny tekst źródłaDvurechenskii, Anatolii V., i Andrei I. Yakimov. "Quantum dot Ge/Si heterostructures". Uspekhi Fizicheskih Nauk 171, nr 12 (2001): 1371. http://dx.doi.org/10.3367/ufnr.0171.200112h.1371.
Pełny tekst źródłaDvurechenskii, Anatolii V., i Andrei I. Yakimov. "Quantum dot Ge/Si heterostructures". Physics-Uspekhi 44, nr 12 (31.12.2001): 1304–7. http://dx.doi.org/10.1070/pu2001v044n12abeh001057.
Pełny tekst źródłaLambert, K., I. Moreels, D. Van Thourhout i Z. Hens. "Quantum Dot Micropatterning on Si". Langmuir 24, nr 11 (czerwiec 2008): 5961–66. http://dx.doi.org/10.1021/la703664r.
Pełny tekst źródłaDvurechenskii, Anatoly, Andrew Yakimov, Victor Kirienko, Alekcei Bloshkin, Vladimir Zinovyev, Aigul Zinovieva i Alexander Mudryi. "Enhanced Optical Properties of Silicon Based Quantum Dot Heterostructures". Defect and Diffusion Forum 386 (wrzesień 2018): 68–74. http://dx.doi.org/10.4028/www.scientific.net/ddf.386.68.
Pełny tekst źródłaGudlavalleti, R. H., B. Saman, R. Mays, M. Lingalugari, E. Heller, J. Chandy i F. Jain. "Modeling of Multi-State Si and Ge Cladded Quantum Dot Gate FETs Using Verilog and ABM Simulations". International Journal of High Speed Electronics and Systems 28, nr 03n04 (wrzesień 2019): 1940026. http://dx.doi.org/10.1142/s0129156419400263.
Pełny tekst źródłaKondo, Jun, Pial Mirdha, Barath Parthasarathy, Pik-Yiu Chan, Bander Saman, Faquir Jain i Evan Heller. "Modeling and Fabrication of GeOx-Ge Cladded Quantum Dot Channel (QDC) FETs on Poly-Silicon". International Journal of High Speed Electronics and Systems 27, nr 01n02 (marzec 2018): 1840005. http://dx.doi.org/10.1142/s0129156418400050.
Pełny tekst źródłaParthasarathy, Barath, Pial Mirdha, Jun Kondo i Faquir Jain. "Dual Quantum Dot Superlattice". International Journal of High Speed Electronics and Systems 27, nr 01n02 (marzec 2018): 1840003. http://dx.doi.org/10.1142/s0129156418400037.
Pełny tekst źródłaChen, Minhan, i Wolfgang Porod. "Simulation of Quantum-Dot Structures in Si/SiO2". VLSI Design 6, nr 1-4 (1.01.1998): 335–39. http://dx.doi.org/10.1155/1998/89258.
Pełny tekst źródłaHe, Peng, Chong Wang, Jie Yang i Yu Yang. "Advance of Ge/Si Quantum Dot Infrared Photodetector". Advanced Materials Research 873 (grudzień 2013): 799–808. http://dx.doi.org/10.4028/www.scientific.net/amr.873.799.
Pełny tekst źródłaRozprawy doktorskie na temat "Si Quantum Dot"
Surana, Kavita. "Towards silicon quantum dot solar cells : comparing morphological properties and conduction phenomena in Si quantum dot single layers and multilayers". Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00647293.
Pełny tekst źródłaWang, T. "High-performance III-V quantum-dot lasers monolithically grown on Si and Ge substrates for Si photonics". Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1362647/.
Pełny tekst źródłaWigblad, Dan. "Structural and optical characterization of Si/Ge quantum dots". Thesis, Linköping University, The Department of Physics, Chemistry and Biology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11672.
Pełny tekst źródłaIn this study silicon-germanium quantum dots grown on silicon have been investigated. The aim of the work was to find quantum dots suitable for use as a thermistor material. The quantum dots were produced at KTH, Stockholm, using a RPCVD reactor that is designed for industrial production.
The techniques used to study the quantum dots were: HRSEM, AFM, HRXRD, FTPL, and Raman spectroscopy. Quantum dots have been produced in single and multilayer structures.
As a result of this work a multilayer structure with 5 layers of quantum dots was produced with a theoretical temperature coefficient of resistance of 4.1 %/K.
Aslan, Bulent. "Physics And Technology Of The Infrared Detection Systems Based On Heterojunctions". Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12604801/index.pdf.
Pełny tekst źródłaAriyawansa, Gamini. "Semiconductor Quantum Structures for Ultraviolet-to-Infrared Multi-Band Radiation Detection". Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/phy_astr_diss/17.
Pełny tekst źródłaLipps, Ferdinand. "Electron spins in reduced dimensions: ESR spectroscopy on semiconductor heterostructures and spin chain compounds". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-74470.
Pełny tekst źródłaJames, Daniel. "Fabrication and electrical characterisation of quantum dots : uniform size distributions and the observation of unusual electrical characteristics and metastability". Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/fabrication-and-electrical-characterisation-of-quantum-dots-uniform-size-distributions-and-the-observation-of-unusual-electrical-characteristics-and-metastability(01bb9182-5290-4ad1-b6a4-3aed3970dbcf).html.
Pełny tekst źródłaPANTINI, SARA. "Analysis and modelling of leachate and gas generation at landfill sites focused on mechanically-biologically treated waste". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2013. http://hdl.handle.net/2108/203393.
Pełny tekst źródłaChen, Hung-Bin, i 陳弘斌. "Optical properties of Ge/Si/Ge quantum dot in multilayer structure". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/59065285991693145803.
Pełny tekst źródła國立中央大學
物理研究所
99
In this paper, we have studied the optical properties of Ge/Si/Ge quantum dots (QDs) structure by using Photoluminescence (PL) spectroscopy.And we use rapid thermal annealing process to improve its light efficiency.Comparing the PL measurements of Ge/Si/Ge QDs structure with Ge/Si QDs structure, the structural difference effect on optical properties is studied. According to the emission energy of annealed samples in excitation-powerdependent PL measurements, we found that Ge/Si/Ge QDs structure has higher emission energy and lower carriers confinement depth due to atomic intermixing effect. According to the PL intensity with power sublinear relation at different temperature measurements, we suggest that the defect has negative effect on light efficiency because emitting light will be absorbed by the electrons confined in the defect. Finally, we found that the Ge/Si/Ge QDs structure has higher activation energy from Temperature-dependent PL measurements. Therefore, we point out that the holes in Ge/Si/Ge QDs structure probably can exist on nearby QDs by tunneling effect.
Kuo, Kuang-Yang, i 郭光揚. "Development of novel Si quantum dot thin films for solar cells application". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/88042976960020575941.
Pełny tekst źródła國立交通大學
光電工程研究所
102
In order to resolve the critical issues of “Green House Effect” and “Energy Crisis” for humanity’s future, the accelerated developments of renewable energies are necessary. Among all of the renewable energies, solar cells (SCs) are highly considered as the most potential one. To ponder these key factors of efficiency, cost, and lifetime, undoubtedly, the Si-based SCs have the most advantages on popularized developments in the future. However, to successfully achieve high efficiency and low cost, also called the third generation SC, the tandem Si-based SCs with multi-bandgap is required to efficiently reduce the mismatched photon energy loss. Based on the unique properties of Si quantum dot (QD), we propose to develop the novel Si QD thin films by utilizing a gradient Si-rich oxide multilayer (GSRO-ML) structure and integrating with ZnO matrix material to overcome the bottlenecks of the largely limited carrier transport efficiency in the Si-based SCs integrating Si QDs. In the beginning of this dissertation, we talk about the importance and recent developments of SCs, and then, the advantages and challenges of SCs integrating Si QDs are discussed. After that, our motivations, fabrication process, and apparatus are also introduced in details. To achieve the formation of super-high density Si QD thin films, we forsake the traditional [SiO2/SRO]-ML structure and develop a new one, GSRO-ML. In our results, by utilizing the periodical variations in Si/O atomic concentration during deposition, the Si QDs with super-high density and good size control can be self-assembled from the uniform aggregations of Si-rich atoms during annealing. Besides, the considerable enhancements on photovoltaic properties are also obtained by using a GSRO-ML structure due to the improved carrier transport efficiency and larger optical absorption coefficient. To obtain the better carrier transport path for the Si QD thin films, we also develop a new matrix material, ZnO, because it has many desirable features, such as wide and direct bandgap, high transparency, and highly tunable electrical properties. In our results, though embedded with Si QDs, the optical properties of ZnO thin film can be preserved in the long- and short-wavelength ranges. In the middle-wavelength range, the significantly enhanced light absorption and the unusual PL emission peak, owing to embedding Si QDs, are observed. These results represent the sub-bandgap formation in ZnO thin film by utilizing Si QDs while maintaining the essential optical properties of ZnO matrix. In the electrical properties, the Si QD embedded ZnO thin film reveals the significantly higher conductivity than that using SiO2 matrix material. Besides, the carriers transport mainly via ZnO matrix, not through Si QDs, is clearly observed. This unique transport mechanism differing from those using the traditional Si-based dielectric matrix materials has great potential on leading to the much better carrier transport efficiency and electrical properties for SC applications. In this dissertation, we had demonstrated the proposed novel Si QD thin films, utilizing a GSRO-ML structure and integrating with ZnO matrix material, are more suitable and advantageous for the Si-based SCs integrating Si QDs. Therefore, the high-efficiency Si-based SCs integrating Si QDs can be most definitely expected using the novel Si QD thin films.
Książki na temat "Si Quantum Dot"
Narlikar, A. V., i Y. Y. Fu, red. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.001.0001.
Pełny tekst źródłaFaces da pandemia de COVID-19 nas relações internacionais e no direito internacional. Editora Amplla, 2021. http://dx.doi.org/10.51859/amplla.fpc368.1121-0.
Pełny tekst źródłada Silva Wasilewski, Cassiana, i Neide de Aquino Noffs. Formação de professores alfabetizadores: desafios da docência. Brazil Publishing, 2021. http://dx.doi.org/10.31012/978-65-5861-954-3.
Pełny tekst źródłaPriori, Claudia, i Márcio José Pereira. Os estudos de gênero e seus percursos: Intersecções possíveis com a história pública. Brazil Publishing, 2020. http://dx.doi.org/10.31012/978-65-5861-023-6.
Pełny tekst źródłaSilva, Bruno Claudionor Lopes da. Do amor humano ao amor divino: Um olhar sobre o pensamento de São Bernardo de Claraval e o Tratado de Diligendo Deo. Brazil Publishing, 2021. http://dx.doi.org/10.31012/978-65-5861-254-4.
Pełny tekst źródłaMartini, André, Sandra Gonçalves Daldegan França, Renato Bernardi i Tiago Eurico de Lacerda. As vulnerabilidades por intermédio da arte: Uma visão interdisciplinar do direito. Redaktor Raul Greco Junior. Vox Littera Publicações, 2021. http://dx.doi.org/10.55647/book.01.2021.
Pełny tekst źródłaGasparro Sevilha Greco, Patrícia, i André Del Grossi Assumpção. Reflexões sobre uma nova hermenêutica constitucional: leis, valores e sociedade. Redaktor Raul Greco. Vox Littera Publicações, 2022. http://dx.doi.org/10.55647/012022.
Pełny tekst źródłaGuimarães, Thiago Teixeira, Daniel Costa Alves da Silva, Elaine Cristina da Silva Pinto, Ercole da Cruz Rubini, Marcos Vinicios Craveiro de Amorim, Patricia Maria Lourenço Dutra, Ricardo Moreira Borges, Thais Cevada i Wagner Santos Coelho. Excesso de exercício físico? Brazilian Journals Editora, 2022. http://dx.doi.org/10.35587/brj.ed.0001379.
Pełny tekst źródłaCzęści książek na temat "Si Quantum Dot"
Katsumi, Ryota, Yasutomo Ota, Satoshi Iwamoto i Yasuhiko Arakawa. "Hybrid Integration of Quantum-Dot Non-classical Light Sources on Si". W Topics in Applied Physics, 93–121. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16518-4_4.
Pełny tekst źródłaLiu, Huiyun. "III–V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates". W Silicon-based Nanomaterials, 357–80. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8169-0_14.
Pełny tekst źródłaLedentsov, N. N. "Si-Ge Quantum Dot Laser: What Can We Learn From III-V Experience?" W Towards the First Silicon Laser, 281–92. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0149-6_24.
Pełny tekst źródłaBaranov, A. V., T. S. Perova, S. Solosin, R. A. Moore, V. Yam, V. Le Thanh i D. Bouchier. "Polarized Raman Spectroscopy of Single Layer and Multilayer Ge/Si(001) Quantum Dot Heterostructures". W Frontiers of Multifunctional Integrated Nanosystems, 139–52. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2173-9_14.
Pełny tekst źródłaSamukawa, Seiji. "Fabrication of three-dimensional Si quantum dot array by fusion of biotemplate and neutral beam etching". W Silicon Nanomaterials Sourcebook, 87–106. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | Series: Series in materials science and engineering: CRC Press, 2017. http://dx.doi.org/10.4324/9781315153551-5.
Pełny tekst źródłade Sousa, J. S., G. A. Farias i J. P. Leburtonb. "Light-Induced Programming of Si Nanocrystal Flash Memories". W Physical Models for Quantum Dots, 925–32. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-60.
Pełny tekst źródłaWang, Jing, Xuejie Zhang i Qiang Su. "Rare Earth Solar Spectral Convertor for Si Solar Cells". W Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications, 139–66. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1590-8_5.
Pełny tekst źródłaLiu, Quanlin, i Ting Wang. "Tuning Luminescence by Varying the O/N or Al/Si Ratio in Some Eu-Doped Nitride Phosphors". W Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications, 343–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52771-9_11.
Pełny tekst źródłaWu, Jiang, Mingchu Tang i Huiyun Liu. "III–V quantum dot lasers epitaxially grown on Si substrates". W Nanoscale Semiconductor Lasers, 17–39. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-814162-5.00002-9.
Pełny tekst źródłaTalalaev, V. G., G. E. Cirlin, A. A. Tonkikh, N. D. Zakharov, P. Werner, U. Gösele, J. W. Tomm i T. Elsaesser. "Miniband-related 1.4–1.8μm Luminescence of Ge/Si Quantum Dot Superlattices". W Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics, 324–45. Elsevier, 2008. http://dx.doi.org/10.1016/b978-0-08-046325-4.00010-4.
Pełny tekst źródłaStreszczenia konferencji na temat "Si Quantum Dot"
Huang, Jian, Daqian Guo, Zhuo Deng, Wei Chen, Tinghui Wu, Yaojiang Chen, Huiyun Liu, Jiang Wu i Baile Chen. "Quantum Dot Quantum Cascade Detector on Si Substrate". W CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sth4i.5.
Pełny tekst źródłaNorman, Justin, Daehwan Jung, Arthur C. Gossard, John E. Bowers, Zeyu Zhang, Yating Wan, MJ Kennedy, Alfredo Torres i Robert Herrick. "High performance quantum dot lasers epitaxially integrated on Si". W Quantum Communications and Quantum Imaging XVI, redaktorzy Ronald E. Meyers, Yanhua Shih i Keith S. Deacon. SPIE, 2018. http://dx.doi.org/10.1117/12.2319627.
Pełny tekst źródłaKamioka, J., T. Kodera, K. Horibe, Y. Kawano i S. Oda. "Fabrication and evaluation of heavily P-doped Si quantum dot and back-gate induced Si quantum dot". W 2012 IEEE Silicon Nanoelectronics Workshop (SNW). IEEE, 2012. http://dx.doi.org/10.1109/snw.2012.6243288.
Pełny tekst źródłaChen, Baile, Yating Wan, Zhiyang Xie, Jian Huang, Chen Shang, Justin Norman, Qiang Li, Kei May Lau, Arthur C. Gossard i John E. Bowers. "Quantum Dot Avalanche Photodetector on Si Substrate". W CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sm3r.2.
Pełny tekst źródłaAnchala, S. P. Purohit, K. C. Mathur, Dinesh K. Aswal i Anil K. Debnath. "Photoabsorption In Si Semiconductor Quantum Dot Nanostructure". W INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010). AIP, 2010. http://dx.doi.org/10.1063/1.3530500.
Pełny tekst źródłaAl-Douri, Y., U. Hashim, N. M. Ahmed, Z. Sauli, Mohamad Rusop i Tetsuo Soga. "Pressure Effect on Si Quantum-Dot Potential". W NANOSCIENCE AND NANOTECHNOLOGY: International Conference on Nanoscience and Nanotechnology—2008. AIP, 2009. http://dx.doi.org/10.1063/1.3160113.
Pełny tekst źródłaOsada, A., Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto i Y. Arakawa. "Quantum-dot nanolasers on Si photonic circuits". W CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sf1a.7.
Pełny tekst źródłaBowers, John E. "Quantum Dot Lasers Epitaxially Grown on Si". W 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8872216.
Pełny tekst źródłaNenashev, A. V., A. F. Zinovieva i Anatoly V. Dvurechenskii. "Spin transport in Ge/Si quantum dot array". W SPIE Proceedings, redaktorzy Kamil A. Valiev i Alexander A. Orlikovsky. SPIE, 2004. http://dx.doi.org/10.1117/12.558535.
Pełny tekst źródłaIwashita, Shinya, Hiroomi Miyahara, Kazunori Koga, Masaharu Shiratani, Shota Nunomura i Michio Kondo. "Plasma CVD for Producing Si Quantum Dot Films". W 2006 International Symposium on Discharges and Electrical Insulation in Vacuum. IEEE, 2006. http://dx.doi.org/10.1109/deiv.2006.357362.
Pełny tekst źródłaRaporty organizacyjne na temat "Si Quantum Dot"
Xie, Y. H. A Quantum Dot Optical Modulator for Integration With Si CMOS. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2005. http://dx.doi.org/10.21236/ada459498.
Pełny tekst źródłaMi, Zetian. Ultrahigh-Speed Electrically Injected 1.55 micrometer Quantum Dot Microtube and Nanowire Lasers on Si. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2015. http://dx.doi.org/10.21236/ada626838.
Pełny tekst źródłaSapkota, Keshab Raj, George T. Wang, Kevin Jones i Emily Turner. Fabrication of Position Controlled Si/SiGe Quantum Dots for Integrated Optical Sources and Beyond. Office of Scientific and Technical Information (OSTI), wrzesień 2018. http://dx.doi.org/10.2172/1472231.
Pełny tekst źródłaAgrela, Fabiano de Abreu. TEA: O cérebro e a infância de uma pessoa com autismo. CPAH REDAÇÃO, czerwiec 2023. http://dx.doi.org/10.56238/cpahciencia-011.
Pełny tekst źródła