Gotowa bibliografia na temat „Shockwave Boundary Layer Interactions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Shockwave Boundary Layer Interactions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Shockwave Boundary Layer Interactions"
Chokani, N., i L. C. Squire. "Transonic shockwave/turbulent boundary layer interactions on a porous surface". Aeronautical Journal 97, nr 965 (maj 1993): 163–70. http://dx.doi.org/10.1017/s0001924000026117.
Pełny tekst źródłaChand, S. V. S. A. Hema Sai. "Transonic shockwave/boundary layer interactions on NACA 5 series -24112". International Journal of Current Engineering and Technology 2, nr 2 (1.01.2010): 629–34. http://dx.doi.org/10.14741/ijcet/spl.2.2014.120.
Pełny tekst źródłaHanna, Rebecca L. "Hypersonic shockwave/turbulent boundary-layer interactions on a porous surface". AIAA Journal 33, nr 10 (październik 1995): 1977–79. http://dx.doi.org/10.2514/3.12755.
Pełny tekst źródłaSebastian, Jiss J., i Frank K. Lu. "Upstream-Influence Scaling of Fin-Induced Laminar Shockwave/Boundary-Layer Interactions". AIAA Journal 59, nr 5 (maj 2021): 1861–64. http://dx.doi.org/10.2514/1.j059354.
Pełny tekst źródłaDélery, J. M. "Shock phenomena in high speed aerodynamics: still a source of major concern". Aeronautical Journal 103, nr 1019 (styczeń 1999): 19–34. http://dx.doi.org/10.1017/s0001924000065076.
Pełny tekst źródłaZahrolayali, Nurfathin, Mohd Rashdan Saad, Azam Che Idris i Mohd Rosdzimin Abdul Rahman. "Assessing the Performance of Hypersonic Inlets by Applying a Heat Source with the Throttling Effect". Aerospace 9, nr 8 (16.08.2022): 449. http://dx.doi.org/10.3390/aerospace9080449.
Pełny tekst źródłaGrilli, Muzio, Peter J. Schmid, Stefan Hickel i Nikolaus A. Adams. "Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction". Journal of Fluid Mechanics 700 (28.02.2012): 16–28. http://dx.doi.org/10.1017/jfm.2012.37.
Pełny tekst źródłaHamed, A., i J. S. Shang. "Survey of validation data base for shockwave boundary-layer interactions in supersonic inlets". Journal of Propulsion and Power 7, nr 4 (lipiec 1991): 617–25. http://dx.doi.org/10.2514/3.23370.
Pełny tekst źródłaSznajder, Janusz, i Tomasz Kwiatkowski. "EFFECTS OF TURBULENCE INDUCED BY MICRO VORTEX GENERATORS ON SHOCKWAVE – BOUNDARY LAYER INTERACTIONS". Journal of KONES. Powertrain and Transport 22, nr 2 (1.01.2015): 241–48. http://dx.doi.org/10.5604/12314005.1165445.
Pełny tekst źródłaKalra, Chiranjeev S., Sohail H. Zaidi, Richard B. Miles i Sergey O. Macheret. "Shockwave–turbulent boundary layer interaction control using magnetically driven surface discharges". Experiments in Fluids 50, nr 3 (18.08.2010): 547–59. http://dx.doi.org/10.1007/s00348-010-0898-9.
Pełny tekst źródłaRozprawy doktorskie na temat "Shockwave Boundary Layer Interactions"
Leung, Andrew Wing Che. "An investigation of three-dimensional shockwave/turbulent-boundary layer interaction". Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284191.
Pełny tekst źródłaGalbraith, Daniel S. "Computational Fluid Dynamics Investigation into Shock Boundary Layer Interactions in the “Glass Inlet” Wind Tunnel". University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1322053278.
Pełny tekst źródłaBellinger, James. "Control of the oblique shockwave/boundary layer interaction in a supersonic inlet". Connect to resource, 2008. http://hdl.handle.net/1811/32065.
Pełny tekst źródłaChokani, Ndaona. "A study of the passive effect on transonic shockwave/turbulent boundary layer interactions on porous surfaces". Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293606.
Pełny tekst źródłaBunnag, Shane. "Bleed Rate Model Based on Prandtl-Meyer Expansion for a Bleed Hole Normal to a Supersonic Freestream". University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282330691.
Pełny tekst źródłaGrilli, Muzio [Verfasser], Nikolaus A. [Akademischer Betreuer] Adams i Roberto [Akademischer Betreuer] Verzicco. "Analysis of the unsteady behavior in shockwave turbulent boundary layer interaction / Muzio Grilli. Gutachter: Roberto Verzicco ; Nikolaus A. Adams. Betreuer: Nikolaus A. Adams". München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1046404741/34.
Pełny tekst źródłaBoyer, Nathan Robert. "The Effects of Viscosity and Three-Dimensionality on Shockwave-Induced Panel Flutter". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu156616766854713.
Pełny tekst źródłaPhilit, Mickaël. "Modélisation, simulation et analyse des instationnarités en écoulement transsonique décollé en vue d'application à l'aéroélasticité des turbomachines". Thesis, Ecully, Ecole centrale de Lyon, 2013. http://www.theses.fr/2013ECDL0033/document.
Pełny tekst źródłaIn modern turbomachinery design, predicting aerolastic phenomena has become a key point. The development of highly loaded components, while reducing their weight, increases the risk of failure. In this context, good understanding and prediction of various instabilities are a major industrial and scientific challenge. This research work aims to improve the prediction of unsteady phenomena involved in turbomachinery aeroelasticity. This study focuses especially on the simulation of shock wave/boundary layer interaction. To begin with, a transonic nozzle separated flow is investigated. Forced oscillation of the shock wave system is simulated through a small unsteady perturbation method combined with the assumption of variable turbulence. This approach is validated against exprimental measurements. The first harmonic of pressure on the wall of the nozzle is predicted quite satisfactorily. The need to linearize the turbulence model was shown of high importance. Deriving the turbulence model, leads us to investigate the turbulence modeling performed to predict the shockwave/boundary layer interaction. A two equations turbulence model supplemented by a "time-lagged" equation is implemented to capture non-equilibrium effects of turbulence. All achieved results for a nozzle are consistent with theory, but overproduction of turbulent kinetic energy at leading edge makes the model useless for turbomachinery configurations. However, the introduction of an eddy viscosity stress limiter inside a two-equation turbulence model proves to give good results. The derivation method is thus presented on such a model, precisely on Wilcox model proposed in 2008. Finally, the linearization technique is extended to aeroelastic problems. A loose fluid-structure coupling strategy is adopted. The structural oscillation of the blades is considered for eigen-modes but frequency is free to change during coupling resolution. The new approach is based on the building of a meta-model to describe the fluid dynamic behavior in order to solve directly the coupled fluid-structure system. This technique is validated on a standard high subsonic turbine configuration and takes advantage of a reduced computation time
Frank, Donya P. "Wave-Current Bottom Boundary Layer Interactions". The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1229087949.
Pełny tekst źródłaTouber, Emile. "Unsteadiness in shock-wave/boundary layer interactions". Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/161073/.
Pełny tekst źródłaKsiążki na temat "Shockwave Boundary Layer Interactions"
R, Hingst W., i United States. National Aeronautics and Space Administration., red. Surface and flow field measurements in a symmetric crossing shockwave/turbulent boundary-layer interaction. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Znajdź pełny tekst źródłaDélery, J. Shock-wave boundary layer interactions. Neuilly sur Seine, France: NATO, Advisory Group for Aerospace Research and Development, 1986.
Znajdź pełny tekst źródłaBabinsky, Holger, i John K. Harvey, red. Shock Wave–Boundary-Layer Interactions. Cambridge: Cambridge University Press, 2011. http://dx.doi.org/10.1017/cbo9780511842757.
Pełny tekst źródłaShock wave-boundary layer interactions. Cambridge: Cambridge University Press, 2011.
Znajdź pełny tekst źródłaDelery, J. Shock-wave boundary layer interactions. Neuilly sur Seine: Agard, 1986.
Znajdź pełny tekst źródłaIUTAM Symposium (1985 Palaiseau, France). Turbulent shear-layer/shock-wave interactions. Redaktorzy Délery J. 1939-, International Union of Theoretical and Applied Mechanics. i France. Office national d'études et de recherches aérospatiales. Berlin: Springer-Verlag, 1986.
Znajdź pełny tekst źródłaArellano, Jordi Vilà-Guerau de. Atmospheric boundary layer: Integrating air chemistry and land interactions. New York, NY: Cambridge University Press, 2015.
Znajdź pełny tekst źródłaBlackaby, Nicholas D. Tollmien-Schlichting/vortex interactions in compressible boundary layer flows. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Znajdź pełny tekst źródłaBlackaby, Nicholas D. Tollmien-Schlichting/vortex interactions in compressible boundary layer flows. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Experimental studies of hypersonic shock-wave boundary-layer interactions. Arlington, Tex: University of Texas at Arlington, 1992.
Znajdź pełny tekst źródłaCzęści książek na temat "Shockwave Boundary Layer Interactions"
Lusher, D. J., i N. D. Sandham. "Shockwave/Boundary-Layer Interactions in Transitional Rectangular Duct Flows". W ERCOFTAC Series, 271–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42822-8_35.
Pełny tekst źródłaBogdonoff, S. M. "Observation of Three-dimensional “Separation” in Shock Wave Turbulent Boundary Layer Interactions". W Boundary-Layer Separation, 37–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83000-6_3.
Pełny tekst źródłaKaushik, Mrinal. "Shock Wave and Boundary Layer Interactions". W Theoretical and Experimental Aerodynamics, 361–91. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1678-4_14.
Pełny tekst źródłaSandholt, Per Even, i Charles J. Farrugia. "The aurora as monitor of solar wind-magnetosphere interactions". W Earth's Low-Latitude Boundary Layer, 335–49. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/133gm34.
Pełny tekst źródłaHultqvist, B., R. Lundin i K. Stasiewicz. "Ion Interactions in the Magnetospheric Boundary Layer". W Geophysical Monograph Series, 127–35. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm038p0127.
Pełny tekst źródłaBai, H. L., Y. Zhou i W. G. Zhang. "Streaky Structures in a Controlled Turbulent Boundary Layer". W Fluid-Structure-Sound Interactions and Control, 135–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40371-2_19.
Pełny tekst źródłaSzwaba, Ryszard, Piotr Doerffer i Piotr Kaczynski. "Transition Effect on Shock Wave Boundary Layer Interaction on Compressor Blade". W Shock Wave Interactions, 31–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73180-3_2.
Pełny tekst źródłaBrown, J. L., M. I. Kussoy i T. J. Coakley. "Turbulent Properties of Axisymmetric Shock-Wave/Boundary-Layer Interaction Flows". W Turbulent Shear-Layer/Shock-Wave Interactions, 137–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82770-9_12.
Pełny tekst źródłaSaida, N. "Separation ahead of Blunt Fins in Supersonic Turbulent Boundary-Layers". W Turbulent Shear-Layer/Shock-Wave Interactions, 247–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82770-9_20.
Pełny tekst źródłaSmits, Alexander J., i Seymour M. Bogdonoff. "A “Preview” of Three-Dimensional Shock-Wave/ Turbulent Boundary-Layer Interactions". W Turbulent Shear-Layer/Shock-Wave Interactions, 191–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82770-9_16.
Pełny tekst źródłaStreszczenia konferencji na temat "Shockwave Boundary Layer Interactions"
Murray, Neil, i Richard Hillier. "Separated Shockwave / Turbulent Boundary Layer Interactions at Hypersonic Speeds". W 36th AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3038.
Pełny tekst źródłaHanna, Rebecca. "Hypersonic shockwave/turbulent boundary layer interactions on a porous surface". W 33rd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-5.
Pełny tekst źródłaSivasubramanian, Jayahar, i Hermann F. Fasel. "Numerical Investigation of Shockwave Boundary Layer Interactions in Supersonic Flows". W 54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0613.
Pełny tekst źródłaHORSTMAN, C. "Computation of sharp-fin-induced shockwave/turbulent boundary layer interactions". W 4th Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1032.
Pełny tekst źródłaPriebe, Stephan, i Pino Martin. "Direct Numerical Simulation of Shockwave and Turbulent Boundary Layer Interactions". W 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-589.
Pełny tekst źródłaLee, Sunyoung, i Andreas Gross. "Numerical Investigation of Super- and Hypersonic Laminar Shockwave Boundary Layer Interactions". W AIAA Aviation 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-3441.
Pełny tekst źródłaSebastian, Jiss J., i Frank K. Lu. "Upstream-Influence Scaling of Fin-Generated Shockwave/Laminar Boundary-Layer Interactions". W AIAA AVIATION 2020 FORUM. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-3009.
Pełny tekst źródłaMurray, Neil, i Richard Hillier. "Hypersonic ShockWave/Turbulent Boundary Layer Interactions In A Three-Dimensional Flow". W 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-121.
Pełny tekst źródłaCohen, Daniel, i Konstantinos Kontis. "Passive Control of Shockwave-Boundary Layer Interactions Using Ultrasonically Absorptive Surfaces". W 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1059.
Pełny tekst źródłaTripathi, Akriti, Lee Mears, Kourosh Shoele i Rajan Kumar. "Oblique Shockwave Boundary Layer Interactions on a Flexible Panel at Mach 2". W AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-0568.
Pełny tekst źródłaRaporty organizacyjne na temat "Shockwave Boundary Layer Interactions"
Martin, M. P., i A. J. Smits. Understanding and Predicting Shockwave and Turbulent Boundary Layer Interactions. Fort Belvoir, VA: Defense Technical Information Center, listopad 2008. http://dx.doi.org/10.21236/ada504718.
Pełny tekst źródłaAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2009. http://dx.doi.org/10.21236/ada531259.
Pełny tekst źródłaAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions In Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2008. http://dx.doi.org/10.21236/ada532783.
Pełny tekst źródłaAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2010. http://dx.doi.org/10.21236/ada541857.
Pełny tekst źródłaAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2012. http://dx.doi.org/10.21236/ada574045.
Pełny tekst źródłaAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2012. http://dx.doi.org/10.21236/ada575522.
Pełny tekst źródłaAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2013. http://dx.doi.org/10.21236/ada598037.
Pełny tekst źródłaAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2011. http://dx.doi.org/10.21236/ada557114.
Pełny tekst źródłaLoth, Eric, i Sang Lee. Understanding Micro-Ramp Control for Shock Boundary Layer Interactions. Fort Belvoir, VA: Defense Technical Information Center, luty 2008. http://dx.doi.org/10.21236/ada478600.
Pełny tekst źródłaDolling, D. S., N. C. Clemens i E. Hood. Exploratory Experimental Study of Transitional Shock Wave Boundary Layer Interactions. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2003. http://dx.doi.org/10.21236/ada411523.
Pełny tekst źródła