Artykuły w czasopismach na temat „Shock-wave and separation- region interaction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Shock-wave and separation- region interaction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Estruch, D., D. G. MacManus, D. P. Richardson, N. J. Lawson, K. P. Garry i J. L. Stollery. "Experimental study of unsteadiness in supersonic shock-wave/turbulent boundary-layer interactions with separation". Aeronautical Journal 114, nr 1155 (maj 2010): 299–308. http://dx.doi.org/10.1017/s0001924000003742.
Pełny tekst źródłaMosele, John-Paul, Andreas Gross i John Slater. "Numerical Investigation of Asymmetric Mach 2.5 Turbulent Shock Wave Boundary Layer Interaction". Aerospace 10, nr 5 (29.04.2023): 417. http://dx.doi.org/10.3390/aerospace10050417.
Pełny tekst źródłaHuang, Xin, i David Estruch-Samper. "Low-frequency unsteadiness of swept shock-wave/turbulent-boundary-layer interaction". Journal of Fluid Mechanics 856 (11.10.2018): 797–821. http://dx.doi.org/10.1017/jfm.2018.735.
Pełny tekst źródłaMosele, John-Paul, Andreas Gross i John Slater. "Numerical Investigation of Mach 2.5 Axisymmetric Turbulent Shock Wave Boundary Layer Interactions". Aerospace 10, nr 2 (9.02.2023): 159. http://dx.doi.org/10.3390/aerospace10020159.
Pełny tekst źródłaBurton, D. M. F., i H. Babinsky. "Corner separation effects for normal shock wave/turbulent boundary layer interactions in rectangular channels". Journal of Fluid Mechanics 707 (2.08.2012): 287–306. http://dx.doi.org/10.1017/jfm.2012.279.
Pełny tekst źródłaChandola, Gaurav, Xin Huang i David Estruch-Samper. "Highly separated axisymmetric step shock-wave/turbulent-boundary-layer interaction". Journal of Fluid Mechanics 828 (6.09.2017): 236–70. http://dx.doi.org/10.1017/jfm.2017.522.
Pełny tekst źródłaBich Ngoc, Hoang Thi, i Nguyen Manh Hung. "Study of separation phenomenon in transonic flows produced by interaction between shock wave and boundary layer". Vietnam Journal of Mechanics 33, nr 3 (8.09.2011): 170–81. http://dx.doi.org/10.15625/0866-7136/33/3/210.
Pełny tekst źródłaShahrbabaki, A. Nazarian, M. Bazazzadeh i R. Khoshkhoo. "Investigation on Supersonic Flow Control Using Nanosecond Dielectric Barrier Discharge Plasma Actuators". International Journal of Aerospace Engineering 2021 (14.07.2021): 1–14. http://dx.doi.org/10.1155/2021/2047162.
Pełny tekst źródłaGU, Wenting, Binqian ZHANG, Kun MA, Dong LI, Pengfei LYU i Jie HAN. "Investigation on the flow mechanism of nacelle airframe interaction for podded blended wing body transport". Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 40, nr 2 (kwiecień 2022): 352–59. http://dx.doi.org/10.1051/jnwpu/20224020352.
Pełny tekst źródłaLAURENCE, S. J., i R. DEITERDING. "Shock-wave surfing". Journal of Fluid Mechanics 676 (6.04.2011): 396–431. http://dx.doi.org/10.1017/jfm.2011.57.
Pełny tekst źródłaSchofield, W. H. "Turbulent-boundary-layer development in an adverse pressure gradient after an interaction with a normal shock wave". Journal of Fluid Mechanics 154 (maj 1985): 43–62. http://dx.doi.org/10.1017/s0022112085001410.
Pełny tekst źródłaEagle, W. Ethan, i James F. Driscoll. "Shock wave–boundary layer interactions in rectangular inlets: three-dimensional separation topology and critical points". Journal of Fluid Mechanics 756 (2.09.2014): 328–53. http://dx.doi.org/10.1017/jfm.2014.382.
Pełny tekst źródłaHUMBLE, R. A., F. SCARANO i B. W. van OUDHEUSDEN. "Unsteady aspects of an incident shock wave/turbulent boundary layer interaction". Journal of Fluid Mechanics 635 (10.09.2009): 47–74. http://dx.doi.org/10.1017/s0022112009007630.
Pełny tekst źródłaKornilov, V. I. "Correlation of the separation region length in shock wave/channel boundary layer interaction". Experiments in Fluids 23, nr 6 (10.12.1997): 489–97. http://dx.doi.org/10.1007/s003480050139.
Pełny tekst źródłaПоливанов, П. А., i А. А. Сидоренко. "Подавление ламинарной отрывной зоны искровым разрядом при числе Маха M = 1.43". Письма в журнал технической физики 44, nr 18 (2018): 60. http://dx.doi.org/10.21883/pjtf.2018.18.46613.17344.
Pełny tekst źródłaPIROZZOLI, SERGIO, MATTEO BERNARDINI i FRANCESCO GRASSO. "Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation". Journal of Fluid Mechanics 657 (24.06.2010): 361–93. http://dx.doi.org/10.1017/s0022112010001710.
Pełny tekst źródłaZuo, Feng-Yuan, Antonio Memmolo, Guo-ping Huang i Sergio Pirozzoli. "Direct numerical simulation of conical shock wave–turbulent boundary layer interaction". Journal of Fluid Mechanics 877 (19.08.2019): 167–95. http://dx.doi.org/10.1017/jfm.2019.558.
Pełny tekst źródłaWang, Ziao, Juntao Chang, Yiming Li, Ruoyu Chen, Wenxin Hou, Jifeng Guo i Lianjie Yue. "Oscillation of the shock train under synchronous variation of incoming Mach number and backpressure". Physics of Fluids 34, nr 4 (kwiecień 2022): 046104. http://dx.doi.org/10.1063/5.0087526.
Pełny tekst źródłaPasha, Amjad A., i Khalid A. Juhany. "Effect of wall temperature on separation bubble size in laminar hypersonic shock/boundary layer interaction flows". Advances in Mechanical Engineering 11, nr 11 (listopad 2019): 168781401988555. http://dx.doi.org/10.1177/1687814019885556.
Pełny tekst źródłaWANG, CHENGPENG, XUANG TIAN i KEMING CHENG. "NUMERICAL INVESTIGATIONS OF PSEUDO-SHOCK WAVES IN VARIABLE CROSS-SECTION DUCTS". Modern Physics Letters B 23, nr 03 (30.01.2009): 485–88. http://dx.doi.org/10.1142/s0217984909018710.
Pełny tekst źródłaMurugan, Jayaprakash N., i Raghuraman N. Govardhan. "Shock wave–boundary layer interaction in supersonic flow over a forward-facing step". Journal of Fluid Mechanics 807 (18.10.2016): 258–302. http://dx.doi.org/10.1017/jfm.2016.574.
Pełny tekst źródłaXiang, X., i H. Babinsky. "Corner effects for oblique shock wave/turbulent boundary layer interactions in rectangular channels". Journal of Fluid Mechanics 862 (16.01.2019): 1060–83. http://dx.doi.org/10.1017/jfm.2018.983.
Pełny tekst źródłaPANARAS, ARGYRIS G. "The effect of the structure of swept-shock-wave/turbulent-boundary-layer interactions on turbulence modelling". Journal of Fluid Mechanics 338 (10.05.1997): 203–30. http://dx.doi.org/10.1017/s0022112097004825.
Pełny tekst źródłaKarnick, Pradeepa T., i Kartik Venkatraman. "Shock–boundary layer interaction and energetics in transonic flutter". Journal of Fluid Mechanics 832 (26.10.2017): 212–40. http://dx.doi.org/10.1017/jfm.2017.629.
Pełny tekst źródłaMa, Xiaogang, Jian Fan, Yunkai Wu, Xiaowei Liu i Rui Xue. "Study on the mechanism of shock wave and boundary layer interaction control using high-frequency pulsed arc discharge plasma". Physics of Fluids 34, nr 8 (sierpień 2022): 086102. http://dx.doi.org/10.1063/5.0095487.
Pełny tekst źródłaQi, Han, Xinliang Li, Xiangxin Ji, Fulin Tong i Changping Yu. "Large-eddy simulation of a hypersonic turbulent boundary layer over a compression corner". AIP Advances 13, nr 2 (1.02.2023): 025265. http://dx.doi.org/10.1063/5.0139966.
Pełny tekst źródłaBeketaeva, Asel, Amr H. Abdalla i Yekaterina Moisseyeva. "Investigation of Vortex Structures for Supersonic Jet Interaction Flowfield". Applied Mechanics and Materials 798 (październik 2015): 546–50. http://dx.doi.org/10.4028/www.scientific.net/amm.798.546.
Pełny tekst źródłaPasha, Amjad A., Khalid A. Juhany i Subramania N. Pillai. "One-equation turbulence models applied to practical scramjet inlet". International Journal of Turbo & Jet-Engines 39, nr 2 (4.06.2021): 241–49. http://dx.doi.org/10.1515/tjj-2021-0013.
Pełny tekst źródłaLi, Xin, Yue Zhang, Hang Yu, Zheng-Kang Lin, Hui-Jun Tan i Shu Sun. "Görtler vortices behavior and prediction in dual-incident shock-wave/turbulent-boundary-layer interactions". Physics of Fluids 34, nr 10 (październik 2022): 106103. http://dx.doi.org/10.1063/5.0100718.
Pełny tekst źródłaBrusniak, Leon, i David S. Dolling. "Physics of unsteady blunt-fin-induced shock wave/turbulent boundary layer interactions". Journal of Fluid Mechanics 273 (25.08.1994): 375–409. http://dx.doi.org/10.1017/s0022112094001989.
Pełny tekst źródłaPasquariello, Vito, Stefan Hickel i Nikolaus A. Adams. "Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number". Journal of Fluid Mechanics 823 (22.06.2017): 617–57. http://dx.doi.org/10.1017/jfm.2017.308.
Pełny tekst źródłaJi, Xiangxin, Xinliang Li, Fulin Tong i Changping Yu. "Large eddy simulation of shock wave/turbulent boundary layer interaction under incipient and fully separated conditions". Physics of Fluids 35, nr 4 (kwiecień 2023): 046106. http://dx.doi.org/10.1063/5.0147829.
Pełny tekst źródłaSchreiber, H. A., i H. Starken. "An Investigation of a Strong Shock-Wave Turbulent Boundary Layer Interaction in a Supersonic Compressor Cascade". Journal of Turbomachinery 114, nr 3 (1.07.1992): 494–503. http://dx.doi.org/10.1115/1.2929170.
Pełny tekst źródłaSimeonides, G., i W. Haase. "Experimental and computational investigations of hypersonic flow about compression ramps". Journal of Fluid Mechanics 283 (25.01.1995): 17–42. http://dx.doi.org/10.1017/s0022112095002229.
Pełny tekst źródłaRUBAN, A. I., D. ARAKI, R. YAPALPARVI i J. S. B. GAJJAR. "On unsteady boundary-layer separation in supersonic flow. Part 1. Upstream moving separation point". Journal of Fluid Mechanics 678 (15.04.2011): 124–55. http://dx.doi.org/10.1017/jfm.2011.104.
Pełny tekst źródłaKaldellis, J. K. "Parametrical Investigation of the Interaction Between Turbulent Wall Shear Layers and Normal Shock Waves, Including Separation". Journal of Fluids Engineering 115, nr 1 (1.03.1993): 48–55. http://dx.doi.org/10.1115/1.2910112.
Pełny tekst źródłaSong, Mo-Ru, i Bo Yang. "Analysis on the unsteady flow structures in the tip region of axial compressor". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 235, nr 6 (14.02.2021): 1272–87. http://dx.doi.org/10.1177/0957650921995111.
Pełny tekst źródłaBonne, N., V. Brion, E. Garnier, R. Bur, P. Molton, D. Sipp i L. Jacquin. "Analysis of the two-dimensional dynamics of a Mach 1.6 shock wave/transitional boundary layer interaction using a RANS based resolvent approach". Journal of Fluid Mechanics 862 (16.01.2019): 1166–202. http://dx.doi.org/10.1017/jfm.2018.932.
Pełny tekst źródłaPickles, J. D., B. R. Mettu, P. K. Subbareddy i V. Narayanaswamy. "On the mean structure of sharp-fin-induced shock wave/turbulent boundary layer interactions over a cylindrical surface". Journal of Fluid Mechanics 865 (18.02.2019): 212–46. http://dx.doi.org/10.1017/jfm.2019.53.
Pełny tekst źródłaPriebe, Stephan, Jonathan H. Tu, Clarence W. Rowley i M. Pino Martín. "Low-frequency dynamics in a shock-induced separated flow". Journal of Fluid Mechanics 807 (20.10.2016): 441–77. http://dx.doi.org/10.1017/jfm.2016.557.
Pełny tekst źródłaWu, Yanhui, Guangyao An, Zhiyang Chen i Bo Wang. "Computational analysis of vortices near casing in a transonic axial compressor rotor". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, nr 2 (5.12.2017): 710–24. http://dx.doi.org/10.1177/0954410017740922.
Pełny tekst źródłaCHEN, LI-WEI, CHANG-YUE XU i XI-YUN LU. "Numerical investigation of the compressible flow past an aerofoil". Journal of Fluid Mechanics 643 (17.12.2009): 97–126. http://dx.doi.org/10.1017/s0022112009991960.
Pełny tekst źródłaGANAPATHISUBRAMANI, B., N. T. CLEMENS i D. S. DOLLING. "Low-frequency dynamics of shock-induced separation in a compression ramp interaction". Journal of Fluid Mechanics 636 (25.09.2009): 397–425. http://dx.doi.org/10.1017/s0022112009007952.
Pełny tekst źródłaHe, Z. W., i S. Y. Zhang. "Lip Separate Flow Blowing and Analysis of Coherence of Inlet". Journal of Engineering for Gas Turbines and Power 108, nr 3 (1.07.1986): 562–65. http://dx.doi.org/10.1115/1.3239947.
Pełny tekst źródłaSansica, Andrea, Neil D. Sandham i Zhiwei Hu. "Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble". Journal of Fluid Mechanics 798 (31.05.2016): 5–26. http://dx.doi.org/10.1017/jfm.2016.297.
Pełny tekst źródłaKNIGHT, D., M. GNEDIN, R. BECHT i A. ZHELTOVODOV. "Numerical simulation of crossing-shock-wave/turbulent-boundary-layer interaction using a two-equation model of turbulence". Journal of Fluid Mechanics 409 (25.04.2000): 121–47. http://dx.doi.org/10.1017/s0022112099007764.
Pełny tekst źródłaGANAPATHISUBRAMANI, B., N. T. CLEMENS i D. S. DOLLING. "Effects of upstream boundary layer on the unsteadiness of shock-induced separation". Journal of Fluid Mechanics 585 (7.08.2007): 369–94. http://dx.doi.org/10.1017/s0022112007006799.
Pełny tekst źródłaWang, Lican, Yilong Zhao, Qiancheng Wang, Yuxin Zhao, Ruoling Zhang i Li Ma. "Three-dimensional characteristics of crossing shock wave/turbulent boundary layer interaction in a double fin with and without micro-ramp control". AIP Advances 12, nr 9 (1.09.2022): 095309. http://dx.doi.org/10.1063/5.0102986.
Pełny tekst źródłaHung, Nguyen Manh, i Hoang Thi Bich Ngoc. "Experimental study of laminar separation phenomenon combining with numerical calculations". Vietnam Journal of Mechanics 33, nr 2 (10.06.2011): 95–104. http://dx.doi.org/10.15625/0866-7136/33/2/41.
Pełny tekst źródłaVanstone, Leon, Mustafa Nail Musta, Serdar Seckin i Noel Clemens. "Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2". Journal of Fluid Mechanics 841 (19.02.2018): 1–27. http://dx.doi.org/10.1017/jfm.2018.8.
Pełny tekst źródła