Gotowa bibliografia na temat „Shock-wave and separation- region interaction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Shock-wave and separation- region interaction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Shock-wave and separation- region interaction"
Estruch, D., D. G. MacManus, D. P. Richardson, N. J. Lawson, K. P. Garry i J. L. Stollery. "Experimental study of unsteadiness in supersonic shock-wave/turbulent boundary-layer interactions with separation". Aeronautical Journal 114, nr 1155 (maj 2010): 299–308. http://dx.doi.org/10.1017/s0001924000003742.
Pełny tekst źródłaMosele, John-Paul, Andreas Gross i John Slater. "Numerical Investigation of Asymmetric Mach 2.5 Turbulent Shock Wave Boundary Layer Interaction". Aerospace 10, nr 5 (29.04.2023): 417. http://dx.doi.org/10.3390/aerospace10050417.
Pełny tekst źródłaHuang, Xin, i David Estruch-Samper. "Low-frequency unsteadiness of swept shock-wave/turbulent-boundary-layer interaction". Journal of Fluid Mechanics 856 (11.10.2018): 797–821. http://dx.doi.org/10.1017/jfm.2018.735.
Pełny tekst źródłaMosele, John-Paul, Andreas Gross i John Slater. "Numerical Investigation of Mach 2.5 Axisymmetric Turbulent Shock Wave Boundary Layer Interactions". Aerospace 10, nr 2 (9.02.2023): 159. http://dx.doi.org/10.3390/aerospace10020159.
Pełny tekst źródłaBurton, D. M. F., i H. Babinsky. "Corner separation effects for normal shock wave/turbulent boundary layer interactions in rectangular channels". Journal of Fluid Mechanics 707 (2.08.2012): 287–306. http://dx.doi.org/10.1017/jfm.2012.279.
Pełny tekst źródłaChandola, Gaurav, Xin Huang i David Estruch-Samper. "Highly separated axisymmetric step shock-wave/turbulent-boundary-layer interaction". Journal of Fluid Mechanics 828 (6.09.2017): 236–70. http://dx.doi.org/10.1017/jfm.2017.522.
Pełny tekst źródłaBich Ngoc, Hoang Thi, i Nguyen Manh Hung. "Study of separation phenomenon in transonic flows produced by interaction between shock wave and boundary layer". Vietnam Journal of Mechanics 33, nr 3 (8.09.2011): 170–81. http://dx.doi.org/10.15625/0866-7136/33/3/210.
Pełny tekst źródłaShahrbabaki, A. Nazarian, M. Bazazzadeh i R. Khoshkhoo. "Investigation on Supersonic Flow Control Using Nanosecond Dielectric Barrier Discharge Plasma Actuators". International Journal of Aerospace Engineering 2021 (14.07.2021): 1–14. http://dx.doi.org/10.1155/2021/2047162.
Pełny tekst źródłaGU, Wenting, Binqian ZHANG, Kun MA, Dong LI, Pengfei LYU i Jie HAN. "Investigation on the flow mechanism of nacelle airframe interaction for podded blended wing body transport". Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 40, nr 2 (kwiecień 2022): 352–59. http://dx.doi.org/10.1051/jnwpu/20224020352.
Pełny tekst źródłaLAURENCE, S. J., i R. DEITERDING. "Shock-wave surfing". Journal of Fluid Mechanics 676 (6.04.2011): 396–431. http://dx.doi.org/10.1017/jfm.2011.57.
Pełny tekst źródłaRozprawy doktorskie na temat "Shock-wave and separation- region interaction"
Zare, Shahneh Abolghasern. "Investigation of a sub boundary layer vortex generator for the control of separation in boundary layer-shock wave interaction". Thesis, Queen Mary, University of London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485561.
Pełny tekst źródłaÖstlund, Jan. "Supersonic flow separation with application to rocket engine nozzles". Doctoral thesis, KTH, Mechanics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3793.
Pełny tekst źródłaThe increasing demand for higher performance in rocketlaunchers promotes the development of nozzles with higherperformance, which basically is achieved by increasing theexpansion ratio. However, this may lead to flow separation andensuing instationary, asymmetric forces, so-called side-loads,which may present life-limiting constraints on both the nozzleitself and other engine components. Substantial gains can bemade in the engine performance if this problem can be overcome,and hence different methods of separation control have beensuggested. However, none has so far been implemented in fullscale, due to the uncertainties involved in modeling andpredicting the flow phenomena involved.
In the present work the causes of unsteady and unsymmetricalflow separation and resulting side-loads in rocket enginenozzles are investigated. This involves the use of acombination of analytical, numerical and experimental methods,which all are presented in the thesis. A main part of the workis based on sub-scale testing of model nozzles operated withair. Hence, aspects on how to design sub-scale models that areable to capture the relevant physics of full-scale rocketengine nozzles are highlighted. Scaling laws like thosepresented in here are indispensable for extracting side-loadcorrelations from sub-scale tests and applying them tofull-scale nozzles.
Three main types of side-load mechanisms have been observedin the test campaigns, due to: (i) intermittent and randompressure fluctuations, (ii) transition in separation patternand (iii) aeroelastic coupling. All these three types aredescribed and exemplified by test results together withanalysis. A comprehensive, up-to-date review of supersonic flowseparation and side-loads in internal nozzle flows is givenwith an in-depth discussion of different approaches forpredicting the phenomena. This includes methods for predictingshock-induced separation, models for predicting side-loadlevels and aeroelastic coupling effects. Examples are presentedto illustrate the status of various methods, and theiradvantages and shortcomings are discussed.
A major part of the thesis focus on the fundamentalshock-wave turbulent boundary layer interaction (SWTBLI) and aphysical description of the phenomenon is given. Thisdescription is based on theoretical concepts, computationalresults and experimental observation, where, however, emphasisis placed on the rocket-engineering perspective. This workconnects the industrial development of rocket engine nozzles tothe fundamental research of the SWTBLI phenomenon and shows howthese research results can be utilized in real applications.The thesis is concluded with remarks on active and passive flowcontrol in rocket nozzles and directions of futureresearch.
The present work was performed at VAC's Space PropulsionDivision within the framework of European spacecooperation.
Keywords:turbulent, boundary layer, shock wave,interaction, overexpanded,rocket nozzle, flow separation,control, side-load, experiments, models, review.
Östlund, Jan. "Flow Processes in Rocket Engine Nozzles with Focus on Flow Separation and Side-Loads". Licentiate thesis, KTH, Mechanics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1452.
Pełny tekst źródłaKowalczyk, Piotr Jozef. "Validation and application of advanced soil constitutive models in numerical modelling of soil and soil-structure interaction under seismic loading". Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/275675.
Pełny tekst źródłaKowalczyk, Piotr Jozef. "Validation and application of advanced soil constitutive models in numerical modelling of soil and soil-structure interaction under seismic loading". Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/275675.
Pełny tekst źródłaDiop, Moussa. "Transition à la turbulence en écoulements compressibles décollés". Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0473/document.
Pełny tekst źródłaResearch dedicated to the study of the unsteadiness of turbulent Shock Wave Boundary Layer Interaction (SWBLI) has allowed a detailed description of this kind of interaction both experimentally and numerically. Several scenario were proposed to explain the low frequency unsteadiness observed in separated SWBLI. Nevertheless, the literature on this kind of flow involving either upstream laminar or transitional conditions is quite reduce. Within the framework of the European TFAST program, an important effort was made to develop experimental devices, in conjunction with numerical simulations, allowing a detailed study of these laminar or transitional configurations. In particular, within the framework of this thesis, a shock wave reflection configuration on a laminar boundary layer was set-up, with a nominal free stream Mach number of 1.68. Using classical metrology (Laser Doppler Anemometry, Hot WireAnemometry) that have been adapted to these particular experimental conditions, we have been able to describe the spatio-temporal properties of the interaction. The mean field has been characterized and compared with the classical theories and the results obtained in other configurations.A model describing the transition mechanisms to turbulence within the interaction has been developed. Its sensitivity to upstream conditions was studied by placing perturbations upstream of the interaction. In all cases, convective (high frequency) and stationary (low frequency) unsteadiness were observed and compared with those existing for upstream turbulent configurations. An intermediate range of convective unsteadiness (medium frequency) has been demonstrated and characterized
Kumara, Akshaya G. "Small-amplitude Oscillations in Hypersonic Double-cone Flow". Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6030.
Pełny tekst źródłaGreene, Benton Robb. "Control of mean separation in a compression ramp shock boundary layer interaction using pulsed plasma jets". Thesis, 2014. http://hdl.handle.net/2152/25422.
Pełny tekst źródłatext
Narayanaswamy, Venkateswa. "Investigation of a pulsed-plasma jet for separation shock/boundary layer interaction control". Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-05-1400.
Pełny tekst źródłatext
Książki na temat "Shock-wave and separation- region interaction"
Hamed, A. Flow separation in shock wave boundary layer interactions at hypersonic speeds. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Znajdź pełny tekst źródłaW, Barter J., i United States. National Aeronautics and Space Administration., red. Control & reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction: Final report on NASA grant NAG 1-1471 for the period 01/09/93 through 01/01/95. Austin, Tex: Center for Aerodynamics Research, Dept. of Aerospace Engineering & Engineering Mechanics, University of Texas at Austin, 1995.
Znajdź pełny tekst źródłaW, Barter J., i United States. National Aeronautics and Space Administration., red. Control & reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction: Final report on NASA grant NAG 1-1471 for the period 01/09/93 through 01/01/95. Austin, Tex: Center for Aerodynamics Research, Dept. of Aerospace Engineering & Engineering Mechanics, University of Texas at Austin, 1995.
Znajdź pełny tekst źródłaW, Barter J., i United States. National Aeronautics and Space Administration., red. Control & reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction: Final report on NASA grant NAG 1-1471 for the period 01/09/93 through 01/01/95. Austin, Tex: Center for Aerodynamics Research, Dept. of Aerospace Engineering & Engineering Mechanics, University of Texas at Austin, 1995.
Znajdź pełny tekst źródłaD, Saunders J., i United States. National Aeronautics and Space Administration., red. 3D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaD, Saunders J., i United States. National Aeronautics and Space Administration., red. 3D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaD, Saunders J., i United States. National Aeronautics and Space Administration., red. 3D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaD, Saunders J., i United States. National Aeronautics and Space Administration., red. 3D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaSimulation of glancing shock wave and boundary layer interaction. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1989.
Znajdź pełny tekst źródłaZeitlin, Vladimir. Geostrophic Adjustment and Wave–Vortex (Non)Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0008.
Pełny tekst źródłaCzęści książek na temat "Shock-wave and separation- region interaction"
Georgievskiy, P. Y., i V. A. Levin. "Front separation regions for blunt and streamlined bodies initiated by temperature wake – bow shock wave interaction". W Shock Waves, 1273–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85181-3_77.
Pełny tekst źródłaAso, Shigeru, Keiichi Karashima, Kiyoshi Sato, Satoshi Okuyama i Shozo Maekawa. "Flow Visualization of Secondary Separation and Oscillating Shock Waves in Three-Dimensional Shock Waves-Turbulent Boundary Layer Interaction Region". W Flow Visualization VI, 607–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84824-7_107.
Pełny tekst źródłaDebiève, J. F., i P. Dupont. "Dependence Between Shock and Separation Bubble in a Shock Wave Boundary Layer Interaction". W IUTAM Symposium on Unsteady Separated Flows and their Control, 331–41. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9898-7_28.
Pełny tekst źródłaMaekawa, Syozo, Shigeru Aso, Shigehide Nakao, Kazuo Arashi, Kenji Tomioka i Hiroyuki Yamao. "Aerodynamic Heating in Three-Dimensional Bow Shock Wave/Turbulent Boundary Layer Interaction Region". W Shock Waves @ Marseille I, 133–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78829-1_21.
Pełny tekst źródłaHuang, X., G. Chandola i D. Estruch-Samper. "Unsteady Separation Shock Dynamics in a Mach 4 Shock-Wave/Turbulent Boundary Layer Interaction". W 31st International Symposium on Shock Waves 1, 1007–13. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-91020-8_121.
Pełny tekst źródłaDallmann, U., i P. Doerffer. "Three-Dimensional Flow Separation caused by Normal Shock-Wave / Turbulent Boundary-Layer Interaction". W Symposium Transsonicum III, 429–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83584-1_35.
Pełny tekst źródłaChandola, G., X. Huang i D. Estruch-Samper. "Experimental Study on the Unsteadiness of an Axisymmetric Shock-Wave/Turbulent-Boundary-Layer Interaction with Separation". W 31st International Symposium on Shock Waves 1, 1067–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-91020-8_128.
Pełny tekst źródłaCaballero, N. "Drag Reduction in Airfoils Using Control Devices in the Shock Wave-Boundary Layer Interaction Region". W Aerodynamic Drag Reduction Technologies, 377–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45359-8_40.
Pełny tekst źródłaDaub, Dennis, Sebastian Willems, Burkard Esser i Ali Gülhan. "Experiments on Aerothermal Supersonic Fluid-Structure Interaction". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 323–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_21.
Pełny tekst źródłaRenane, Rachid, Rachid Allouche, Oumaima Zmit i Bouchra Bouchama. "Aero Heating Optimization of a Hypersonic Thermochemical Non-Equilibrium Flow around Blunt Body by Application of Opposing Jet and Blunt Spike". W Hypersonic Vehicles - Applications, Recent Advances, and Perspectives [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101659.
Pełny tekst źródłaStreszczenia konferencji na temat "Shock-wave and separation- region interaction"
Jian, Liu, Duan Wenhua, Zhang Liangji i Qiao Weiyang. "Effect of Suction Side Jet on the Shock Wave Boundary Layer Interaction in Transonic Turbine". W ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-16256.
Pełny tekst źródłaShi, Ke, i Song Fu. "Study of Shock/Blade Tip Leakage Vortex/Boundary Layer Interaction in a Transonic Rotor With IDDES Method". W ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95252.
Pełny tekst źródłaSchreiber, H. A., i H. Starken. "An Investigation of a Strong Shock-Wave Turbulent Boundary Layer Interaction in a Supersonic Compressor Cascade". W ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-092.
Pełny tekst źródłaSaito, Seishiro, Masato Furukawa, Kazutoyo Yamada, Keisuke Watanabe, Akinori Matsuoka i Naoyuki Niwa. "Mechanisms and Quantitative Evaluation of Flow Loss Generation in a Multi-Stage Transonic Axial Compressor". W ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90439.
Pełny tekst źródłaBell, Ralf M., i Leonhard Fottner. "Investigations of Shock/Boundary-Layer Interaction in a Highly Loaded Compressor Cascade". W ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-084.
Pełny tekst źródłaCzerwinska, J., P. Doerffer i F. Magagnato. "Bifurcation of Shock Induced Separation Structures". W ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/fed-24928.
Pełny tekst źródłaPriebe, Stephan, Daniel Wilkin, Andy Breeze-Stringfellow, Arash Mousavi, Rathakrishnan Bhaskaran i Luke d’Aquila. "Large Eddy Simulations of a Transonic Airfoil Cascade". W ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-80683.
Pełny tekst źródłaZhongwei, He, i Zhang Shiying. "Lip Separate Flow Blowing and Analysis of Coherence of Inlet". W ASME 1985 Beijing International Gas Turbine Symposium and Exposition. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-igt-68.
Pełny tekst źródłaAotsuka, Mizuho, Toshinori Watanabe i Yasuo Machina. "Role of Shock and Boundary Layer Separation on Unsteady Aerodynamic Characteristics of Oscillating Transonic Cascade". W ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38425.
Pełny tekst źródłaBiswas, Debasish, i Tomohiko Jimbo. "Studies on Characteristic Frequency and Length Scale of Shock Induced Motion in Transonic Diffuser Using a High Order LES Approach". W ASME 2015 Gas Turbine India Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gtindia2015-1225.
Pełny tekst źródła