Artykuły w czasopismach na temat „Shell nanoparticles for hydrogen sensing application”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Shell nanoparticles for hydrogen sensing application”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wang, Junjie, Xiaoping Yue, Yulong Zhang, Chengcheng Zhu, Xing Kang, Hai-Dong Yu i Gang Lu. "Plasmonic Sensing of Glucose Based on Gold–Silver Core–Shell Nanoparticles". Chemosensors 10, nr 10 (8.10.2022): 404. http://dx.doi.org/10.3390/chemosensors10100404.
Pełny tekst źródłaZhang, Mingying, Qinglin Sheng, Fei Nie i Jianbin Zheng. "Synthesis of Cu nanoparticles-loaded Fe3O4@carbon core–shell nanocomposite and its application for electrochemical sensing of hydrogen peroxide". Journal of Electroanalytical Chemistry 730 (wrzesień 2014): 10–15. http://dx.doi.org/10.1016/j.jelechem.2014.07.020.
Pełny tekst źródłaEfimov, Alexey A., Denis V. Kornyushin, Arseny I. Buchnev, Ekaterina I. Kameneva, Anna A. Lizunova, Pavel V. Arsenov, Andrey E. Varfolomeev, Nikita B. Pavzderin, Alexey V. Nikonov i Victor V. Ivanov. "Fabrication of Conductive and Gas-Sensing Microstructures Using Focused Deposition of Copper Nanoparticles Synthesized by Spark Discharge". Applied Sciences 11, nr 13 (22.06.2021): 5791. http://dx.doi.org/10.3390/app11135791.
Pełny tekst źródłaHong, Zih-Siou, Chun-Han Wu i Ren-Jang Wu. "Application of Pt@SnO2 nanoparticles for hydrogen gas sensing". Journal of the Chinese Chemical Society 65, nr 7 (17.05.2018): 861–67. http://dx.doi.org/10.1002/jccs.201700385.
Pełny tekst źródłaKhlebtsov, Boris N., Andrey M. Burov, Andrey M. Zakharevich i Nikolai G. Khlebtsov. "SERS and Indicator Paper Sensing of Hydrogen Peroxide Using Au@Ag Nanorods". Sensors 22, nr 9 (21.04.2022): 3202. http://dx.doi.org/10.3390/s22093202.
Pełny tekst źródłaLi, Yongxin, Qiufang Lu, Shengnan Wu, Lun Wang i Xianming Shi. "Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@shell structure". Biosensors and Bioelectronics 41 (marzec 2013): 576–81. http://dx.doi.org/10.1016/j.bios.2012.09.027.
Pełny tekst źródłaJiang, Guicheng, Shaoshuai Zhou, Xiantao Wei, Yonghu Chen, Changkui Duan, Min Yin, Bin Yang i Wenwu Cao. "794 nm excited core–shell upconversion nanoparticles for optical temperature sensing". RSC Advances 6, nr 14 (2016): 11795–801. http://dx.doi.org/10.1039/c5ra27203c.
Pełny tekst źródłaTrujillo, Ricardo Matias, Daniela Estefanía Barraza, Martin Lucas Zamora, Anna Cattani-Scholz i Rossana Elena Madrid. "Nanostructures in Hydrogen Peroxide Sensing". Sensors 21, nr 6 (21.03.2021): 2204. http://dx.doi.org/10.3390/s21062204.
Pełny tekst źródłaTsai, Yu-Sheng, Deng-Yi Wang, Jia-Jie Chang, Keng-Tien Liang, Ya-Hsuan Lin, Chih-Chen Kuo, Ssu-Han Lu i in. "Incorporation of Au Nanoparticles on ZnO/ZnS Core Shell Nanostructures for UV Light/Hydrogen Gas Dual Sensing Enhancement". Membranes 11, nr 11 (22.11.2021): 903. http://dx.doi.org/10.3390/membranes11110903.
Pełny tekst źródłaHan, Geun-Ho, Ki Yoon Kim, Hyunji Nam, Hyeonjin Kim, Jihwan Yoon, Jung-Hyun Lee, Hong-Kyu Kim i in. "Facile Direct Seed-Mediated Growth of AuPt Bimetallic Shell on the Surface of Pd Nanocubes and Application for Direct H2O2 Synthesis". Catalysts 10, nr 6 (10.06.2020): 650. http://dx.doi.org/10.3390/catal10060650.
Pełny tekst źródłaWy, Younghyun, Seunghoon Lee, Dae Han Wi i Sang Woo Han. "Colloidal Clusters of Bimetallic Core-Shell Nanoparticles for Enhanced Sensing of Hydrogen in Aqueous Solution". Particle & Particle Systems Characterization 35, nr 5 (19.01.2018): 1700380. http://dx.doi.org/10.1002/ppsc.201700380.
Pełny tekst źródłaMartinho, José M. G., Telmo J. V. Prazeres, Leila Moura i José P. S. Farinha. "Fluorescence of oligonucleotides adsorbed onto the thermoresponsive poly(isopropyl acrylamide) shell of polymer nanoparticles: Application to bioassays". Pure and Applied Chemistry 81, nr 9 (26.08.2009): 1615–34. http://dx.doi.org/10.1351/pac-con-08-11-11.
Pełny tekst źródłaMin, Yuanzhi, Gao Song, Ling Zhou, Xinyue Wang, Pingying Liu i Jumei Li. "Silver@mesoporous Anatase TiO2 Core-Shell Nanoparticles and Their Application in Photocatalysis and SERS Sensing". Coatings 12, nr 1 (6.01.2022): 64. http://dx.doi.org/10.3390/coatings12010064.
Pełny tekst źródłaPominova, Daria, Vera Proydakova, Igor Romanishkin, Anastasia Ryabova, Sergei Kuznetsov, Oleg Uvarov, Pavel Fedorov i Victor Loschenov. "Temperature Sensing in the Short-Wave Infrared Spectral Region Using Core-Shell NaGdF4:Yb3+, Ho3+, Er3+@NaYF4 Nanothermometers". Nanomaterials 10, nr 10 (9.10.2020): 1992. http://dx.doi.org/10.3390/nano10101992.
Pełny tekst źródłaZhang, Lifeng, Xiaoxu Wang, Yong Zhao, Zhengtao Zhu i Hao Fong. "Electrospun carbon nano-felt surface-attached with Pd nanoparticles for hydrogen sensing application". Materials Letters 68 (luty 2012): 133–36. http://dx.doi.org/10.1016/j.matlet.2011.10.064.
Pełny tekst źródłaYoo, Il-Han, Shankara S. Kalanur i Hyungtak Seo. "Deposition of Pd nanoparticles on MWCNTs: Green approach and application to hydrogen sensing". Journal of Alloys and Compounds 788 (czerwiec 2019): 936–43. http://dx.doi.org/10.1016/j.jallcom.2019.02.298.
Pełny tekst źródłaKhosravi, Arezoo, Manouchehr Vossoughi, Saeed Shahrokhian i Iran Alemzadeh. "Magnetic labelled HRP-polymer nanoparticles: A recyclable nanobiocatalyst". Journal of the Serbian Chemical Society 78, nr 7 (2013): 921–31. http://dx.doi.org/10.2298/jsc120930133k.
Pełny tekst źródłaLiu, Ying, Huan Zhang, Cong Ma i Nan Sun. "Modified Nimo Nanoparticles for Efficient Catalytic Hydrogen Generation from Hydrous Hydrazine". Catalysts 9, nr 7 (10.07.2019): 596. http://dx.doi.org/10.3390/catal9070596.
Pełny tekst źródłaLi, Xiao-Rong, Ming-Chen Xu, Hong-Yuan Chen i Jing-Juan Xu. "Bimetallic Au@Pt@Au core–shell nanoparticles on graphene oxide nanosheets for high-performance H2O2 bi-directional sensing". Journal of Materials Chemistry B 3, nr 21 (2015): 4355–62. http://dx.doi.org/10.1039/c5tb00312a.
Pełny tekst źródłaNguyen Duc, Nghia, Chinh Huynh Dang, Hoang Tran Vinh i Vu Dao Hong. "Peroxidase-like activity of Fe3O4/carbon core-shell nanostructured : effects of carbon shell thickness for application to glucose biosensor". Vietnam Journal of Catalysis and Adsorption 10, nr 2 (30.07.2021): 109–13. http://dx.doi.org/10.51316/jca.2021.038.
Pełny tekst źródłaPalanisamy, Selvakumar, Chelladurai Karuppiah, Shen-Ming Chen, R. Emmanuel, P. Muthukrishnan i P. Prakash. "Direct electrochemistry of myoglobin at silver nanoparticles/myoglobin biocomposite: Application for hydrogen peroxide sensing". Sensors and Actuators B: Chemical 202 (październik 2014): 177–84. http://dx.doi.org/10.1016/j.snb.2014.05.069.
Pełny tekst źródłaMikhaylov, Alexey A., Alexander G. Medvedev, Tatiana A. Tripol'skaya, Victor S. Popov, Artem S. Mokrushin, Dmitry P. Krut'ko, Petr V. Prikhodchenko i Ovadia Lev. "H2O2induced formation of graded composition sodium-doped tin dioxide and template-free synthesis of yolk–shell SnO2particles and their sensing application". Dalton Transactions 46, nr 46 (2017): 16171–79. http://dx.doi.org/10.1039/c7dt03104a.
Pełny tekst źródłaKhamfoo, Khakkhanang, Matawee Punginsang, Kanittha Inyawilert, Anurat Wisitsoraat, Adisorn Tuantranont i Chaikarn Liewhiran. "Effect of PdO-PdO2 core–shell nanocatalysts on hydrogen sensing performances of flame-made spinel Zn2SnO4 nanoparticles". Applied Surface Science 586 (czerwiec 2022): 152817. http://dx.doi.org/10.1016/j.apsusc.2022.152817.
Pełny tekst źródłaNguyen, Thuy T. D., Dung Van Dao, Dong-Seog Kim, Hu-Jun Lee, Sang-Yeob Oh, In-Hwan Lee i Yeon-Tae Yu. "Effect of core and surface area toward hydrogen gas sensing performance using Pd@ZnO core-shell nanoparticles". Journal of Colloid and Interface Science 587 (kwiecień 2021): 252–59. http://dx.doi.org/10.1016/j.jcis.2020.12.017.
Pełny tekst źródłaAlzahrani, Eman. "Colorimetric Detection of Ammonia Using Synthesized Silver Nanoparticles from Durian Fruit Shell". Journal of Chemistry 2020 (19.10.2020): 1–11. http://dx.doi.org/10.1155/2020/4712130.
Pełny tekst źródłaTian, Yuan, Hui Qiao, Tao Yao, Shuguo Gao, Lujian Dai, Jun Zhao, Ying Chen i Pengcheng Xu. "Highly Sensitive MEMS Sensor Using Bimetallic Pd–Ag Nanoparticles as Catalyst for Acetylene Detection". Sensors 22, nr 19 (2.10.2022): 7485. http://dx.doi.org/10.3390/s22197485.
Pełny tekst źródłaPandey, P. C., i Digvijay Panday. "Tetrahydrofuran and hydrogen peroxide mediated conversion of potassium hexacyanoferrate into Prussian blue nanoparticles: Application to hydrogen peroxide sensing". Electrochimica Acta 190 (luty 2016): 758–65. http://dx.doi.org/10.1016/j.electacta.2015.12.188.
Pełny tekst źródłaSowmya, Narsingam, Satish Bykkam i Kalagadda V. Rao. "Synthesis and Characterization of Ceria-Titania (CeO2 - TiO2) Core-Shell Nanoparticles for Enzymatic Bio Sensing Application". Current Nanomaterials 1, nr 2 (27.09.2016): 132–38. http://dx.doi.org/10.2174/2468187306666160722152916.
Pełny tekst źródłaQiu, Lin, Shuwen Zhou, Ying Li, Wen Rui, Pengfei Cui, Changli Zhang, Yongsheng Yu i in. "Silica-Coated Fe3O4 Nanoparticles as a Bifunctional Agent for Magnetic Resonance Imaging and ZnII Fluorescent Sensing". Technology in Cancer Research & Treatment 20 (1.01.2021): 153303382110365. http://dx.doi.org/10.1177/15330338211036539.
Pełny tekst źródłaZhang, Qian, Minying Wu, Yuanyuan Fang, Chao Deng, Hsin-Hui Shen, Yi Tang i Yajun Wang. "Dendritic Mesoporous Silica Hollow Spheres for Nano-Bioreactor Application". Nanomaterials 12, nr 11 (6.06.2022): 1940. http://dx.doi.org/10.3390/nano12111940.
Pełny tekst źródłaNguyen, Thi Thuy, Stephanie Lau-Truong, Fayna Mammeri i Souad Ammar. "Star-Shaped Fe3-xO4-Au Core-Shell Nanoparticles: From Synthesis to SERS Application". Nanomaterials 10, nr 2 (10.02.2020): 294. http://dx.doi.org/10.3390/nano10020294.
Pełny tekst źródłaChomkitichai, Weerasak, Hathaithip Ninsonthi, Chaikarn Liewhiran, Anurat Wisitsoraat, Saengrawee Sriwichai i Sukon Phanichphant. "Flame-Made Pt-Loaded TiO2Thin Films and Their Application as H2Gas Sensors". Journal of Nanomaterials 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/497318.
Pełny tekst źródłaPandey, Prem Chandra, i Dheeraj Singh Chauhan. "3-Glycidoxypropyltrimethoxysilane mediated in situ synthesis of noble metal nanoparticles: Application to hydrogen peroxide sensing". Analyst 137, nr 2 (2012): 376–85. http://dx.doi.org/10.1039/c1an15843k.
Pełny tekst źródłaGOWTHAMAN, N. S. K., i S. ABRAHAM JOHN. "Electroless deposition of Gold-Platinum Core@Shell Nanoparticles on Glassy Carbon Electrode for Non-Enzymatic Hydrogen Peroxide sensing#". Journal of Chemical Sciences 128, nr 3 (13.02.2016): 331–38. http://dx.doi.org/10.1007/s12039-016-1038-8.
Pełny tekst źródłaSingh, Vinod, Shivani Dhall, Akshey Kaushal i Bodh R. Mehta. "Room temperature response and enhanced hydrogen sensing in size selected Pd-C core-shell nanoparticles: Role of carbon shell and Pd-C interface". International Journal of Hydrogen Energy 43, nr 2 (styczeń 2018): 1025–33. http://dx.doi.org/10.1016/j.ijhydene.2017.11.143.
Pełny tekst źródłaGuo, Ruochen, Yanru Wang, Shaoxuan Yu, Wenxin Zhu, Fangqing Zheng, Wei Liu, Daohong Zhang i Jianlong Wang. "Dual role of hydrogen peroxide on the oxidase-like activity of nanoceria and its application for colorimetric hydrogen peroxide and glucose sensing". RSC Advances 6, nr 65 (2016): 59939–45. http://dx.doi.org/10.1039/c6ra09217a.
Pełny tekst źródłaLian, Jiajia, Dexin Yin, Shuang Zhao, Xixi Zhu, Qingyun Liu, Xianxi Zhang i Xiao Zhang. "Core-shell structured Ag-CoO nanoparticles with superior peroxidase-like activity for colorimetric sensing hydrogen peroxide and o-phenylenediamine". Colloids and Surfaces A: Physicochemical and Engineering Aspects 603 (październik 2020): 125283. http://dx.doi.org/10.1016/j.colsurfa.2020.125283.
Pełny tekst źródłaPandey, Prem C., i Ashish K. Pandey. "Novel synthesis of Prussian blue nanoparticles and nanocomposite sol: Electro-analytical application in hydrogen peroxide sensing". Electrochimica Acta 87 (styczeń 2013): 1–8. http://dx.doi.org/10.1016/j.electacta.2012.08.069.
Pełny tekst źródłaBaghayeri, Mehdi, Hojat Veisi, Samaneh Farhadi, Hadi Beitollahi i Behrooz Maleki. "Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide". Journal of the Iranian Chemical Society 15, nr 5 (15.01.2018): 1015–22. http://dx.doi.org/10.1007/s13738-018-1298-y.
Pełny tekst źródłaHwang, Sung-Ho, Young Kwang Kim, Soon Moon Jeong, Changsoon Choi, Ka Young Son, Soo-Keun Lee i Sang Kyoo Lim. "Wearable colorimetric sensing fiber based on polyacrylonitrile with PdO@ZnO hybrids for the application of detecting H2 leakage". Textile Research Journal 90, nr 19-20 (25.03.2020): 2198–211. http://dx.doi.org/10.1177/0040517520912729.
Pełny tekst źródłaManivannan, Shanmugam, i Ramasamy Ramaraj. "Core-shell Au/Ag nanoparticles embedded in silicate sol-gel network for sensor application towards hydrogen peroxide". Journal of Chemical Sciences 121, nr 5 (wrzesień 2009): 735–43. http://dx.doi.org/10.1007/s12039-009-0088-6.
Pełny tekst źródłaSasikumar, Thangarasu, i Malaichamy Ilanchelian. "A simple assay for direct visual and colorimetric sensing application of cysteamine using Au@Ag core-shell nanoparticles". Optical Materials 109 (listopad 2020): 110237. http://dx.doi.org/10.1016/j.optmat.2020.110237.
Pełny tekst źródłaKundu, Manas Kumar, Mriganka Sadhukhan i Sudip Barman. "Ordered assemblies of silver nanoparticles on carbon nitride sheets and their application in the non-enzymatic sensing of hydrogen peroxide and glucose". Journal of Materials Chemistry B 3, nr 7 (2015): 1289–300. http://dx.doi.org/10.1039/c4tb01740d.
Pełny tekst źródłaTang, Li, Shi Mo, Shi Gang Liu, Na Li, Yu Ling, Nian Bing Li i Hong Qun Luo. "Preparation of bright fluorescent polydopamine-glutathione nanoparticles and their application for sensing of hydrogen peroxide and glucose". Sensors and Actuators B: Chemical 259 (kwiecień 2018): 467–74. http://dx.doi.org/10.1016/j.snb.2017.12.071.
Pełny tekst źródłaWang, Handong, Huahua Wang, Tengfei Li, Jie Ma, Kai Li i Xia Zuo. "Silver nanoparticles selectively deposited on graphene-colloidal carbon sphere composites and their application for hydrogen peroxide sensing". Sensors and Actuators B: Chemical 239 (luty 2017): 1205–12. http://dx.doi.org/10.1016/j.snb.2016.08.143.
Pełny tekst źródłaMu, Jianshuai, Li Zhang, Min Zhao i Yan Wang. "Co3O4 nanoparticles as an efficient catalase mimic: Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide". Journal of Molecular Catalysis A: Chemical 378 (listopad 2013): 30–37. http://dx.doi.org/10.1016/j.molcata.2013.05.016.
Pełny tekst źródłaHemmati, Saba, Mehdi Baghayeri, Sanaz Kazemi i Hojat Veisi. "Biosynthesis of silver nanoparticles using oak leaf extract and their application for electrochemical sensing of hydrogen peroxide". Applied Organometallic Chemistry 32, nr 11 (3.09.2018): e4537. http://dx.doi.org/10.1002/aoc.4537.
Pełny tekst źródłaLete, Cecilia, Adela-Maria Spinciu, Maria-Gabriela Alexandru, Jose Calderon Moreno, Sorina-Alexandra Leau, Mariana Marin i Diana Visinescu. "Copper(II) Oxide Nanoparticles Embedded within a PEDOT Matrix for Hydrogen Peroxide Electrochemical Sensing". Sensors 22, nr 21 (28.10.2022): 8252. http://dx.doi.org/10.3390/s22218252.
Pełny tekst źródłaGuo, Huizhang, Yuanzhi Chen, Xiaozhen Chen, Ruitao Wen, Guang-Hui Yue i Dong-Liang Peng. "Facile synthesis of near-monodisperse Ag@Ni core–shell nanoparticles and their application for catalytic generation of hydrogen". Nanotechnology 22, nr 19 (23.03.2011): 195604. http://dx.doi.org/10.1088/0957-4484/22/19/195604.
Pełny tekst źródłaMurugavelu, M., i B. Karthikeyan. "Synthesis, characterization of Ag-Au core-shell bimetal nanoparticles and its application for electrocatalytic oxidation/sensing of l-methionine". Materials Science and Engineering: C 70 (styczeń 2017): 656–64. http://dx.doi.org/10.1016/j.msec.2016.09.046.
Pełny tekst źródła