Gotowa bibliografia na temat „SHEAR WALL SYSTEM”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SHEAR WALL SYSTEM”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SHEAR WALL SYSTEM"
Park, Wan Shin, Jeong Eun Kim, Sun Woong Kim, Song Hee Yun, Nam Young Eom i Hyun Do Yun. "Panel Shear Strength of Steel Coupling Beam-Pseudo Strain Hardening Cementitious Composite Wall Connection". Applied Mechanics and Materials 328 (czerwiec 2013): 965–69. http://dx.doi.org/10.4028/www.scientific.net/amm.328.965.
Pełny tekst źródłaZhang, Wei Jing, Yi Nan Du i Jia Ru Qian. "Experimental Research on Seismic Performance of Cast-In Situ RC Grillage Shear Walls Formed with Heat Preservation Hollow Blocks". Advanced Materials Research 446-449 (styczeń 2012): 672–78. http://dx.doi.org/10.4028/www.scientific.net/amr.446-449.672.
Pełny tekst źródłaGholizadeh, M., i Y. Yadollahi. "Comparing Steel Plate Shear Wall Behavior with Simple and Corrugated Plates". Applied Mechanics and Materials 147 (grudzień 2011): 80–85. http://dx.doi.org/10.4028/www.scientific.net/amm.147.80.
Pełny tekst źródłaSuwal, Rajan, i Aakarsha Khawas. "Performance of Reinforced Concrete Shear Wall In Dual Structural System: A Review". Nepal Journal of Science and Technology 21, nr 1 (31.12.2022): 91–100. http://dx.doi.org/10.3126/njst.v21i1.49918.
Pełny tekst źródłaWirth, Ulrich, Nuri Shirali, Vladimír Křístek i Helmut Kurth. "HYBRID SHEARWALL SYSTEM — SHEAR STRENGTH AT THE INTERFACE CONNECTION". Acta Polytechnica 53, nr 6 (31.12.2013): 913–22. http://dx.doi.org/10.14311/ap.2013.53.0913.
Pełny tekst źródłaKui, Dai. "Research of Short-Leg Shear Wall Structure System Function in Multiple Coupled Field". Advanced Materials Research 594-597 (listopad 2012): 2464–69. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.2464.
Pełny tekst źródłaYang, De Jian, i Zong Chen. "Analysis to Earthquake Resistant Behavior of Composite Steel Plate Shear Wall Based on ABAQUS Software". Applied Mechanics and Materials 423-426 (wrzesień 2013): 1506–10. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.1506.
Pełny tekst źródłaChen, Liang, i Zhong Fan Chen. "Experimental Study on Seismic Behavior of Meshwork Cold-Formed Thin-Wall Steel RC Shear Wall". Advanced Materials Research 368-373 (październik 2011): 1943–48. http://dx.doi.org/10.4028/www.scientific.net/amr.368-373.1943.
Pełny tekst źródłaKarande, Hrishikesh, i A. U. Bhalerao. "Analysis of RCC Building with Regular and Dumbbell Shaped Shear Wall in Different Types of Zones Using ETABS Software". International Journal for Research in Applied Science and Engineering Technology 11, nr 6 (30.06.2023): 14–22. http://dx.doi.org/10.22214/ijraset.2023.52921.
Pełny tekst źródłaVogiatzis, Tzanetis, Themistoklis Tsalkatidis i Aris Avdelas. "Wood-steel composite shear walls with openings". International Journal of Engineering & Technology 10, nr 1 (25.12.2020): 14. http://dx.doi.org/10.14419/ijet.v10i1.31255.
Pełny tekst źródłaRozprawy doktorskie na temat "SHEAR WALL SYSTEM"
Upreti, Manohar Raj. "BEHAVIOR OF FOUNDATION BEAM FOR SHEAR WALL STRUCTURAL SYSTEM WITH COUPLING BEAMS". OpenSIUC, 2019. https://opensiuc.lib.siu.edu/theses/2635.
Pełny tekst źródłaTrutalli, Davide. "Insight into seismic behaviour of timber shear-wall systems". Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424481.
Pełny tekst źródłaQuesta tesi di dottorato è il risultato di tre anni di attività di ricerca in ambito ingegneristico strutturale applicato allo studio di sistemi costruttivi innovativi in legno. Il principale obiettivo è quello di fornire un contributo alla ricerca scientifica internazionale e ai metodi attuali di progettazione in merito alla risposta sismica di sistemi in legno a pareti sismo-resistenti, i quali rappresentano tutt’ora un’innovazione nel settore delle costruzioni e si stanno diffondendo grazie alle loro caratteristiche favorevoli. Una panoramica iniziale sull’utilizzo dei principali sistemi strutturali in legno in zone sismiche per la realizzazione di edifici bassi o di media altezza viene fornita e contestualizzata nella vigente normativa sismica europea. La prima parte della tesi affronta il tema della progettazione sismica di sistemi a pareti in legno, con particolare attenzione ai criteri di modellazione lineare e non lineare, proponendo diverse strategie ed evidenziandone le caratteristiche. In questa parte vengono forniti inoltre definizioni e concetti fondamentali propri dell’analisi sismica di strutture in legno. Un’attenzione particolare è riservata alla definizione e applicazione del “capacity design”, sottolineandone lo stretto legame con il concetto di fattore di struttura. Viene proposta infine una definizione del fattore di struttura come prodotto tra una parte intrinseca alla struttura e una sovraresistenza di progetto. Tale definizione permette di caratterizzare i sistemi strutturali con la propria capacità dissipativa e di valutare separatamente la riserva di sicurezza introdotta dalla progettazione. La seconda parte della tesi analizza il comportamento strutturale della tecnologia X-Lam (CLT), che rappresenta uno dei più comuni sistemi strutturali in legno. In questa parte vengono approfonditi i concetti di duttilità, capacità dissipativa, regolarità e irregolarità applicati al sistema X-Lam. La risposta sismica e la capacità dissipativa di questo sistema sono state preliminarmente valutate tramite una procedura analitico-sperimentale. Modelli numerici non-lineari hanno quindi permesso di valutarne la capacità dissipativa intrinseca in funzione delle variabili costruttive proprie del sistema. I risultati mostrano come le decisioni costruttive in fase di progettazione influenzino la risposta sismica dell’edificio; ciò è in contrasto all’applicazione di un unico valore del fattore di struttura per l’intera tecnologia X-Lam. Un’analisi statistica applicata a tali risultati numerici ha consentito di proporre formulazioni analitiche per il fattore di struttura per edifici regolari in funzione delle caratteristiche dell’edificio stesso. Infine, le stesse analisi condotte su edifici non regolari in altezza hanno fornito un coefficiente per tenere in conto della riduzione di capacità dissipativa a causa dell’irregolarità. Nella terza parte viene presentata un’applicazione della tecnologia X-Lam per costruire edifici alti, analizzando il comportamento di edifici snelli con nucleo sismo-resistente e pareti aggiuntive perimetrali. Vengono riportati inoltre le principali limitazioni e inconvenienti nel realizzare tali strutture in aree caratterizzate da elevata intensità sismica e le loro implicazioni nella progettazione. La parte finale descrive e analizza tre sistemi strutturali in legno innovativi, come alternative a tecnologie più comuni, quali X-Lam o platform-frame. Questi sistemi, soggetti ad azioni sismiche, sono caratterizzati da una capacità deformativa e dissipativa diffusa, al contrario del sistema X-Lam in cui tale capacità è concentrata principalmente negli elementi di connessione. Questa risposta differente è studiata attraverso test sperimentali quasi statici e simulazioni numeriche. In dettaglio, sono presentati e analizzati due sistemi a pareti massicce stratificate; realizzate senza l’uso di colla tra gli strati e una parete ibrida acciaio-legno con un sistema innovativo di controvento.
Farnsworth, Michael Sterling. "Wall Shear Stress in Simplified and Scanned Avian Respiratory Airways". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/8818.
Pełny tekst źródłaLim, Hyungsuk. "Performance of strand-based wood composite post-and-beam shear wall system". Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/56823.
Pełny tekst źródłaForestry, Faculty of
Graduate
Carneal, Jason Bradley. "Integration and Validation of Flow Image Quantification (Flow-IQ) System". Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/35322.
Pełny tekst źródłaMaster of Science
TUNC, GOKHAN. "RC/COMPOSITE WALL-STEEL FRAME HYBRID BUILDINGS WITH CONNECTIONS AND SYSTEM BEHAVIOR". University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1020441384.
Pełny tekst źródłaJust, Paul J. III. "A State of the Art Review of Special Plate Shear Walls". University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1459155417.
Pełny tekst źródłaMa, Siyao. "Numerical study of pin-supported cross-laminated timber (CLT) shear wall system equipped with low-yield steel dampers". Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57747.
Pełny tekst źródłaForestry, Faculty of
Graduate
Helvey, Jacob. "Experimental Investigation of Wall Shear Stress Modifications due to Turbulent Flow over an Ablative Thermal Protection System Analog Surface". UKnowledge, 2015. http://uknowledge.uky.edu/me_etds/57.
Pełny tekst źródłaLiu, Janet. "Design of a Novel Tissue Culture System to Subject Aortic Tissue to Multidirectional Bicuspid Aortic Valve Wall Shear Stress". Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1527077368757049.
Pełny tekst źródłaKsiążki na temat "SHEAR WALL SYSTEM"
Kianoush, Mohammed Reza. Inelastic seismic response of precast concrete large panel coupled shear wall systems. [Regina]: Dept. of Civil Engineering, University of Alberta, 1986.
Znajdź pełny tekst źródłaWentzel, Jolanda J., Ethan M. Rowland, Peter D. Weinberg i Robert Krams. Biomechanical theories of atherosclerosis. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755777.003.0012.
Pełny tekst źródłaZydroń, Tymoteusz. Wpływ systemów korzeniowych wybranych gatunków drzew na przyrost wytrzymałości gruntu na ścinanie. Publishing House of the University of Agriculture in Krakow, 2019. http://dx.doi.org/10.15576/978-83-66602-46-5.
Pełny tekst źródłaCzęści książek na temat "SHEAR WALL SYSTEM"
Yamada, M., i T. Yamakaji. "Steel panel shear wall – Analysis on the center core steel panel shear wall system". W Behaviour of Steel Structures in Seismic Areas, 541–48. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211198-74.
Pełny tekst źródłaHejazi, Farzad, Nima Ostovar i Abdilahi Bashir. "Seismic Response of Shear Wall with Viscous Damping System". W GCEC 2017, 595–607. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8016-6_46.
Pełny tekst źródłaZhang, Zhongwei, i Guoliang Bai. "Equivalent bilinear SDOF system of fabricated concrete shear wall structure". W Advances in Frontier Research on Engineering Structures Volume 1, 418–22. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003336631-67.
Pełny tekst źródłaMartinelli, Enzo, Ciro Faella, Emidio Nigro i Carmine Lima. "Retrofitting of School Building Located in Southern Italy". W Case Studies on Conservation and Seismic Strengthening/Retrofitting of Existing Structures, 71–94. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2020. http://dx.doi.org/10.2749/cs002.071.
Pełny tekst źródłaZhang, Jianjian, i Lin Ji. "Optimizing CO2 Emissions and Cost of Shear Wall Structure Based on Computer Simulation". W 2021 International Conference on Big Data Analytics for Cyber-Physical System in Smart City, 467–75. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7469-3_52.
Pełny tekst źródłaRen, Hongmei, Jianping Zhu, Yanyan Lv i Weiwei Qin. "Aseismic Design of an Out-of-Code High-Rise Building in Shanghai". W Advances in Frontier Research on Engineering Structures, 21–31. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8657-4_3.
Pełny tekst źródłaKildashti, Kamyar, i Bijan Samali. "Experimental and Numerical Studies on the In-Plane Shear Behavior of PVC-Encased Concrete Walls". W Lecture Notes in Civil Engineering, 421–30. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_43.
Pełny tekst źródłaJain, D. K., i M. S. Hora. "Interaction Analysis of Space Frame-Shear Wall-Soil System to Investigate Forces in the Columns Under Seismic Loading". W Advances in Structural Engineering, 789–801. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2193-7_62.
Pełny tekst źródłaHsu, Thomas T. C. "Shear Ductility and Energy Dissipation of Reinforced Concrete Walls". W Infrastructure Systems for Nuclear Energy, 185–202. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536254.ch12.
Pełny tekst źródłaPapathanasiou, Spyridoula Μ., Panos Tsopelas i Thanasis Zisis. "Seismic Performance of Bridge Systems Enhanced with Cellular-Solid Shear Walls". W Springer Tracts on Transportation and Traffic, 245–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59169-4_21.
Pełny tekst źródłaStreszczenia konferencji na temat "SHEAR WALL SYSTEM"
Barnard, Casey, Jessica Meloy i Mark Sheplak. "An instrumentation grade wall shear stress sensing system". W 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808608.
Pełny tekst źródłaBarnard, Casey, David Mills i Mark Sheplak. "A system for vector measurement of aerodynamic wall shear stress". W 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017. http://dx.doi.org/10.1109/transducers.2017.7994204.
Pełny tekst źródłaYoshino, Takashi, Yuji Suzuki i Nobuhide Kasagi. "EVALUATION OF GA-BASED FEEDBACK CONTROL SYSTEM FOR DRAG REDUCTION IN WALL TURBULENCE". W Third Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2003. http://dx.doi.org/10.1615/tsfp3.310.
Pełny tekst źródłaZhao, Qiuhong, i Abolhassan Astaneh-Asl. "Experimental and Analytical Studies of a Steel Plate Shear Wall System". W Structures Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/41016(314)106.
Pełny tekst źródłaMorrison, Gerald L., Robert B. Winslow i H. Davis Thames. "Phase Averaged Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Measurements in a Whirling Annular Seal". W ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-101.
Pełny tekst źródłaSoltani, Ali, Ardalan Sabamehr, Ashutosh Bagchi i Amit Chandra. "System identification and vibration-based damage detection in a concrete shear wall system". W Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, redaktor Hoon Sohn. SPIE, 2018. http://dx.doi.org/10.1117/12.2296623.
Pełny tekst źródłaMathew, Alka Susan, i Regi P. Mohan. "Analytical Study on Seismic Performance of Aluminium Sandwich Shear Wall with Different Core Shapes". W International Web Conference in Civil Engineering for a Sustainable Planet. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.112.6.
Pełny tekst źródłaVoigt, Elizabeth, Cara Buchanan, Jaime Schmieg, M. Nichole Rylander i Pavlos Vlachos. "Wall Shear Stress Measurements in an Arterial Flow Bioreactor". W ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53333.
Pełny tekst źródłaThacker, Monica, RayChang Tsao i Steven A. Jones. "Accuracy of Axial Wall Shear Stress Measurements From a Three Dimensional Particle Tracking System". W ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-1313.
Pełny tekst źródłaIngle, Rahul, Ravi Yadav, Hemant Punekar i Jing Cao. "Modeling of Particle Wall Interaction and Film Transport Using Eulerian Wall Film Model". W ASME 2014 Gas Turbine India Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gtindia2014-8230.
Pełny tekst źródłaRaporty organizacyjne na temat "SHEAR WALL SYSTEM"
Reshotko, Eli, i Mehran Mehregany. Development and Calibration of Wall-Shear-Stress Microsensor Systems. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2001. http://dx.doi.org/10.21236/ada387738.
Pełny tekst źródłaCOLD FORMED STEEL SHEAR WALL RACKING ANALYSIS THROUGH A MECHANISTIC APPROACH: CFS-RAMA. The Hong Kong Institute of Steel Construction, wrzesień 2022. http://dx.doi.org/10.18057/ijasc.2022.18.3.2.
Pełny tekst źródłaRESEARCH ON SEISMIC BEHAVIOR OF L-SHAPED CONCRETE-FILLED STEEL TUBES COLUMN FRAME-BUCKLING RESTRAINED STEEL PLATE SHEAR WALLS. The Hong Kong Institute of Steel Construction, wrzesień 2023. http://dx.doi.org/10.18057/ijasc.2023.19.3.8.
Pełny tekst źródła