Gotowa bibliografia na temat „SHEAR CORE WITH OUTRIGGER”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SHEAR CORE WITH OUTRIGGER”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SHEAR CORE WITH OUTRIGGER"
Kushwaha, Vandana, i Neeti Mishra. "A Review on Dynamic Analysis of Outrigger Systems in High Rise Building against Lateral Loading". International Journal for Research in Applied Science and Engineering Technology 10, nr 4 (30.04.2022): 564–68. http://dx.doi.org/10.22214/ijraset.2022.41317.
Pełny tekst źródłaPatel, Pankaj. "Comparative analysis of Wall Belt Systems, Shear Core Outrigger Systems and Truss Belt Systems on Residential Apartment". International Journal for Research in Applied Science and Engineering Technology 9, nr 10 (31.10.2021): 1781–91. http://dx.doi.org/10.22214/ijraset.2021.38686.
Pełny tekst źródłaXu, Ze Yao, Qian Lin i Jian Lin Zhang. "Dynamic Response of Damped Outrigger System for Frame-Core Tube Structure under Earthquake Loads". Advanced Materials Research 243-249 (maj 2011): 1203–9. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.1203.
Pełny tekst źródłaÇelebi, Mehmet. "Responses of a 58-Story RC Dual Core Shear Wall and Outrigger Frame Building Inferred from Two Earthquakes". Earthquake Spectra 32, nr 4 (listopad 2016): 2449–71. http://dx.doi.org/10.1193/011916eqs018m.
Pełny tekst źródłaSwati Nigdikar i V. S. Shingade. "A seismic behavior of RCC high rise structure with and without outrigger and belt truss system for different earthquake zones and type of soil". World Journal of Advanced Engineering Technology and Sciences 9, nr 1 (30.06.2023): 159–65. http://dx.doi.org/10.30574/wjaets.2023.9.1.0156.
Pełny tekst źródłaWang, Zhi Hao. "Free Vibration Analysis of Frame-Core Tube Structures Attached with Damped Outriggers". Applied Mechanics and Materials 238 (listopad 2012): 648–51. http://dx.doi.org/10.4028/www.scientific.net/amm.238.648.
Pełny tekst źródłaShin, Sung Woo, Cheul Kyu Jung i Kwang Soo Lee. "Control of Lateral Displacement for Super Tall Building by Floor & Partial 3D Brace". Applied Mechanics and Materials 284-287 (styczeń 2013): 1251–58. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.1251.
Pełny tekst źródłaSamat, Roslida Abd, Nasly Mohamed Ali, Abdul Kadir Marsono i Abu Bakar Fadzil. "The Role of Belt Wall in Minimizing The Response Due To Wind Load". MATEC Web of Conferences 266 (2019): 01009. http://dx.doi.org/10.1051/matecconf/201926601009.
Pełny tekst źródłaKharade, S. S., i P. B. Salgar. "Review on High Rise Building with Outrigger and Belt Truss System". International Journal for Research in Applied Science and Engineering Technology 10, nr 8 (31.08.2022): 454–60. http://dx.doi.org/10.22214/ijraset.2022.46211.
Pełny tekst źródłaAhmed, Mohammed Mudabbir, i Khaja Musab Manzoor. "A Comparative Study On The Seismic Performance Of Multi-storey Buildings With Different Structural Systems". IOP Conference Series: Earth and Environmental Science 1026, nr 1 (1.05.2022): 012020. http://dx.doi.org/10.1088/1755-1315/1026/1/012020.
Pełny tekst źródłaRozprawy doktorskie na temat "SHEAR CORE WITH OUTRIGGER"
GUPTA, ARUN KUMAR. "DETERMINATION OF SEISMIC PARAMETER OF RCC TALL BUILDING USING SHEAR CORE , SHEAR WALL AND SHEAR CORE WITH OUTRIGGER". Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18840.
Pełny tekst źródłaPeterson, James B. "Comparison of Analysis and Optimization Methods for Core-Megacolumn-Outrigger Skyscrapers". BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2834.
Pełny tekst źródłaAlanazi, Abdulaziz Manqal. "The Use of Core and Outrigger Systems for High-Rise Steel Structures". University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1576180826759645.
Pełny tekst źródłaZhang, Hong Dong. "Shear lag in tube-in-tube structures coupled with outrigger and belt trusses". Thesis, University of Macau, 2003. http://umaclib3.umac.mo/record=b1636335.
Pełny tekst źródłaDEASON, JEREMY THOMAS. "SEISMIC DESIGN OF CONNECTIONS BETWEEN STEEL OUTRIGGER BEAMS AND REINFORCED CONCRETE WALLS". University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1021661255.
Pełny tekst źródłaRoberts, Ryan (Ryan M. ). "Shear lag in truss core sandwich beams". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32935.
Pełny tekst źródłaIncludes bibliographical references (leaf 30).
An experimental study was conducted to investigate the possible influence of shear lag in the discrepancy between the theoretical and measured stiffness of truss core sandwich beams. In previous studies, the measured values of stiffness in loading have proven to be 50% of the theoretical stiffness during three point bending tests. To test the effect of shear lag on this phenomenon, the beams' dimensions were altered to decrease the presence of shear lag in a gradual manner so a trend could be observed. The experimental trails were carried out on three types of beams each with different diameters of truss material. Results show that this study has improved the accuracy of the measured results from previous studies with the two smallest truss diameter beams. Because the discrepancy between the theoretical and measured values is the greatest for the largest beams, (when the shear deflection has the least influence), it is concluded that shear lag is not responsible for the discrepancy between measured and theoretical stiffness.
by Ryan Roberts.
S.B.
Noury, Philippe. "Shear crack initiation and propagation in foam core sandwich structures". Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326642.
Pełny tekst źródłaPaulino, Madison Radhames. "Preliminary Design of Tall Buildings". Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/239.
Pełny tekst źródłaTUNC, GOKHAN. "RC/COMPOSITE WALL-STEEL FRAME HYBRID BUILDINGS WITH CONNECTIONS AND SYSTEM BEHAVIOR". University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1020441384.
Pełny tekst źródła鄺君尚 i Jun-shang Kuang. "Elastic and elasto-plastic analysis of shear wall and core wall structures". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1988. http://hub.hku.hk/bib/B3123155X.
Pełny tekst źródłaKsiążki na temat "SHEAR CORE WITH OUTRIGGER"
Mankbadi, R. R. Effects of core turbulence on jet excitability. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Znajdź pełny tekst źródłaPajari, Matti. Shear resistance of prestressed hollow core slabs on flexible supports. Espoo, Finland: Technical Research Centre of Finland, 1995.
Znajdź pełny tekst źródłaMazzone, Graziano. The shear response of precast, pretensioned hollow-core concrete slabs. Ottawa: National Library of Canada, 1996.
Znajdź pełny tekst źródłaRiemer, Michael. Development and validation of the downhole freestanding shear device (DFSD) for measuring the dynamic properties of clay. Sacramento, CA: California Dept. of Transportation, Division of Research and Innovation, 2008.
Znajdź pełny tekst źródłaFellinger, Joris H. H. Shear & Anchorage Behavior Of Fire Exposed Hollow Core Slabs. Delft Univ Pr, 2004.
Znajdź pełny tekst źródłaCzęści książek na temat "SHEAR CORE WITH OUTRIGGER"
Czabaj, Michael W., W. R. Tubbs, Alan T. Zehnder i Barry D. Davidson. "Compression/Shear Response of Honeycomb Core". W Experimental and Applied Mechanics, Volume 6, 393–98. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0222-0_48.
Pełny tekst źródłaLiu, Y., J. Huang, F. F. Sun i G. Y. Chen. "Simulation and Simplified Method Study on Seismic Collapse of Core-outrigger Structures". W Lecture Notes in Civil Engineering, 1481–500. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7331-4_118.
Pełny tekst źródłaQuinlan, Taylor, Alan Lloyd i Sajjadul Haque. "Effect of Core Fill Timing on Shear Capacity in Hollow-Core Slabs". W Lecture Notes in Civil Engineering, 359–69. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0656-5_30.
Pełny tekst źródłaMiyata, M., N. Kurita i I. Nakamura. "Turbulent Plane Jet Excited Mechanically by an Oscillating Thin Plate in the Potential Core". W Turbulent Shear Flows 7, 209–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_16.
Pełny tekst źródłaLiu, Xian-Feng, i Adam M. Dziewonski. "Global analysis of shear wave velocity anomalies in the lower-most mantle". W The Core‐Mantle Boundary Region, 21–36. Washington, D. C.: American Geophysical Union, 1998. http://dx.doi.org/10.1029/gd028p0021.
Pełny tekst źródłaRathi, Nishant, G. Muthukumar i Manoj Kumar. "Influence of Shear Core Curtailment on the Structural Response of Core-Wall Structures". W Lecture Notes in Civil Engineering, 207–15. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0362-3_17.
Pełny tekst źródłaManshadi, Behzad D., Anastasios P. Vassilopoulos, Julia de Castro i Thomas Keller. "Shear Wrinkling of GFRP Webs in Cell-Core Sandwiches". W Advances in FRP Composites in Civil Engineering, 95–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17487-2_18.
Pełny tekst źródłaChovet, Rogelio, i Fethi Aloui. "Void Fraction Influence Over Aqueous Foam Flow: Wall Shear Stress and Core Shear Evolution". W Progress in Clean Energy, Volume 1, 909–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16709-1_66.
Pełny tekst źródłaSurana, Mitesh, Yogendra Singh i Dominik H. Lang. "Seismic Performance of Shear-Wall and Shear-Wall Core Buildings Designed for Indian Codes". W Advances in Structural Engineering, 1229–41. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2193-7_96.
Pełny tekst źródłaYamada, M., i T. Yamakaji. "Steel panel shear wall – Analysis on the center core steel panel shear wall system". W Behaviour of Steel Structures in Seismic Areas, 541–48. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211198-74.
Pełny tekst źródłaStreszczenia konferencji na temat "SHEAR CORE WITH OUTRIGGER"
SU, R. K. L., P. C. W. WONG i A. M. CHANDLER. "APPLICATION OF STRUT-AND-TIE METHOD ON OUTRIGGER BRACED CORE WALL BUILDINGS". W Tall Buildings from Engineering to Sustainability - Sixth International Conference on Tall Buildings, Mini Symposium on Sustainable Cities, Mini Symposium on Planning, Design and Socio-Economic Aspects of Tall Residential Living Environment. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701480_0013.
Pełny tekst źródłaNosiglia, Luis, Amaury Leroy i Vincent de Ville de Goyet. "Silver Tower Brussels – Adaptative outriggers". W IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/ghent.2021.1909.
Pełny tekst źródłaNosiglia, Luis, Amaury Leroy i Vincent de Ville de Goyet. "Silver Tower Brussels – Adaptative outriggers". W IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/ghent.2021.1909.
Pełny tekst źródłaCheok, M. F., C. C. Lam i G. K. Er. "OPTIMUM ANALYSIS OF OUTRIGGER-BRACED STRUCTURES WITH NON-UNIFORM CORE AND MINIMUM TOP-DRIFT". W 10th World Congress on Computational Mechanics. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/meceng-wccm2012-18565.
Pełny tekst źródłaMANKBADI, REDA, EDWARD RICE i GANESH RAMAN. "Effects of core turbulence on jet excitability". W 2nd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-966.
Pełny tekst źródłaNie, Jianguo, i Ran Ding. "Experimental Research on Seismic Performance of K-Style Steel Outrigger Truss to Concrete Core Tube Wall Joints". W Structures Congress 2013. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412848.244.
Pełny tekst źródłaVotyakov, E. V., i Stavros C. Kassinos. "CORE OF THE MAGNETIC OBSTACLE". W Sixth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/tsfp6.1130.
Pełny tekst źródłaNie, Jianguo, i Ran Ding. "Analysis on the Mechanism of New Joints Between Steel K-Style Outrigger Truss and Concrete Core in Tall Buildings". W 10th Pacific Structural Steel Conference (PSSC 2013). Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-7137-9_015.
Pełny tekst źródłaWong, Patrick C., Brian Taylor i Jean Audibert. "Differences In Shear Strength Between Jumbo Piston Core and Conventional Rotary Core Samples". W Offshore Technology Conference. Offshore Technology Conference, 2008. http://dx.doi.org/10.4043/19683-ms.
Pełny tekst źródłaAnacleto, Paulo M., Edgar Fernandes, Manuel V. Heitor i Sergei I. Shtork. "CHARACTERISTICS OF PRECESSING VORTEX CORE IN THE LPP COMBUSTOR MODEL". W Second Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/tsfp2.220.
Pełny tekst źródłaRaporty organizacyjne na temat "SHEAR CORE WITH OUTRIGGER"
Hahm, T. S., i K. H. Burrell. Role of flow shear in enhanced core confinement regimes. Office of Scientific and Technical Information (OSTI), marzec 1996. http://dx.doi.org/10.2172/220600.
Pełny tekst źródłaBell, M. G., R. E. Bell, P. C. Efthimion, D. R. Ernst, E. D. Fredrickson i et al. Core Transport Reduction in Tokamak Plasmas with Modified Magnetic Shear. Office of Scientific and Technical Information (OSTI), lipiec 1998. http://dx.doi.org/10.2172/2552.
Pełny tekst źródłaMcDermott, Matthew R. Shear Capacity of Hollow-Core Slabs with Concrete Filled Cores. Precast/Prestressed Concrete Institute, 2018. http://dx.doi.org/10.15554/pci.rr.comp-002.
Pełny tekst źródłaBurrell, K. H., C. M. Greenfield, L. L. Lao, G. M. Staebler, M. E. Austin, B. W. Rice i B. W. Stallard. Effects of ExB Velocity Shear and Magnetic Shear in the Formation of Core Transport Barriers in the DIII-D Tokamak. Office of Scientific and Technical Information (OSTI), grudzień 1997. http://dx.doi.org/10.2172/629302.
Pełny tekst źródłaBroome, Scott, Mathew Ingraham i Perry Barrow. Permeability and Direct Shear Test Determinations of Barnwell Core in Support of UNESE. Office of Scientific and Technical Information (OSTI), sierpień 2018. http://dx.doi.org/10.2172/1734478.
Pełny tekst źródłaBroome, Scott, Moo Lee i Aviva Joy Sussman. Direct Shear and Triaxial Shear test Results on Core from Borehole U-15n and U-15n#10 NNSS in support of SPE. Office of Scientific and Technical Information (OSTI), grudzień 2018. http://dx.doi.org/10.2172/1488326.
Pełny tekst źródłaSchumaker, S. A., Stephen A. Danczyk, Malissa D. Lightfoot i Alan L. Kastengren. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2014. http://dx.doi.org/10.21236/ada611313.
Pełny tekst źródłaMones, Ryan M., i Sergio F. Breña. Flexural and Shear Strength of Hollow-core Slabs with Cast-in-place Field Topping. Precast/Prestressed Concrete Institute, 2012. http://dx.doi.org/10.15554/pci.rr.comp-008.
Pełny tekst źródłaROBERTS, JESSE D., i RICHARD A. JEPSEN. Development for the Optional Use of Circular Core Tubes with the High Shear Stress Flume. Office of Scientific and Technical Information (OSTI), marzec 2001. http://dx.doi.org/10.2172/780295.
Pełny tekst źródłaRyan, J. J., A. Zagorevski, N. R. Cleven, A J Parsons i N. L. Joyce. Architecture of pericratonic Yukon-Tanana terrane in the northern Cordillera. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/326062.
Pełny tekst źródła