Gotowa bibliografia na temat „Shape memory assisted self-healing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Shape memory assisted self-healing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Shape memory assisted self-healing"
Luo, Xiaofan, i Patrick T. Mather. "Shape Memory Assisted Self-Healing Coating". ACS Macro Letters 2, nr 2 (luty 2013): 152–56. http://dx.doi.org/10.1021/mz400017x.
Pełny tekst źródłaXie, Fang, Zhongxin Ping, Wanting Xu, Fenghua Zhang, Yuzhen Dong, Lianjie Li, Chengsen Zhang i Xiaobo Gong. "A Metal Coordination-Based Supramolecular Elastomer with Shape Memory-Assisted Self-Healing Effect". Polymers 14, nr 22 (12.11.2022): 4879. http://dx.doi.org/10.3390/polym14224879.
Pełny tekst źródłaBhattacharya, Swapnil, Richard Hailstone i Christopher L. Lewis. "Thermoplastic Blend Exhibiting Shape Memory-Assisted Self-Healing Functionality". ACS Applied Materials & Interfaces 12, nr 41 (15.09.2020): 46733–42. http://dx.doi.org/10.1021/acsami.0c13645.
Pełny tekst źródłaMenon, Aishwarya V., Giridhar Madras i Suryasarathi Bose. "The journey of self-healing and shape memory polyurethanes from bench to translational research". Polymer Chemistry 10, nr 32 (2019): 4370–88. http://dx.doi.org/10.1039/c9py00854c.
Pełny tekst źródłaXu, Yurun, i Dajun Chen. "Shape memory-assisted self-healing polyurethane inspired by a suture technique". Journal of Materials Science 53, nr 14 (20.04.2018): 10582–92. http://dx.doi.org/10.1007/s10853-018-2346-9.
Pełny tekst źródłaYang, Li, Xili Lu, Zhanhua Wang i Hesheng Xia. "Diels–Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function". Polymer Chemistry 9, nr 16 (2018): 2166–72. http://dx.doi.org/10.1039/c8py00162f.
Pełny tekst źródłaWang, Q., J. Meng, Y. Ma i L. Xia. "Thermally assisted self-healing and shape memory behaviour of natural rubber based composites". Express Polymer Letters 15, nr 10 (2021): 929–39. http://dx.doi.org/10.3144/expresspolymlett.2021.75.
Pełny tekst źródłaRodriguez, Erika D., Xiaofan Luo i Patrick T. Mather. "Linear/Network Poly(ε-caprolactone) Blends Exhibiting Shape Memory Assisted Self-Healing (SMASH)". ACS Applied Materials & Interfaces 3, nr 2 (21.01.2011): 152–61. http://dx.doi.org/10.1021/am101012c.
Pełny tekst źródłaRučigaj, Aleš, Rok Ambrožič i Matjaž Krajnc. "Thermally Assisted Self‐Healing and Shape Memory Behavior of Diphenolic Acid‐Based Benzoxazines". Macromolecular Materials and Engineering 305, nr 12 (12.10.2020): 2000463. http://dx.doi.org/10.1002/mame.202000463.
Pełny tekst źródłaShojaei, Amir, Soodabeh Sharafi i Guoqiang Li. "A multiscale theory of self-crack-healing with solid healing agent assisted by shape memory effect". Mechanics of Materials 81 (luty 2015): 25–40. http://dx.doi.org/10.1016/j.mechmat.2014.10.008.
Pełny tekst źródłaRozprawy doktorskie na temat "Shape memory assisted self-healing"
Dunn, Simon Craig. "A novel self-healing shape memory polymer-cementitious system". Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54194/.
Pełny tekst źródłaPeairs, Daniel M. "Development of a Self-Sensing and Self-Healing Bolted Joint". Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/33925.
Pełny tekst źródłaMaster of Science
Zhang, Hongji. "Matériaux polymères à mémoire de forme et autoréparables contrôlés par la lumière via un effet photothermique". Thèse, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/5337.
Pełny tekst źródłaHuang, Yu-Han, i 黃玉涵. "Shape Memory Assisted Self-healing Behavior of Biobased NR/PCL Blends". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/k8sdjd.
Pełny tekst źródła國立宜蘭大學
化學工程與材料工程學系碩士班
107
This study focused on the processing and preparation of intelligent environmentally friendly elastic materials with self-healing effects. Self-healing ability depends on the depth of crack, temperature, and grafting percentage. The materials we used in this study are natural rubber (NR) and poly(ε-caprolactone) (PCL). In this study, we have modified the PCL and grafted acrylic acid (AA) onto PCL. After grafting PCL, it was mixed with NR. Benzoyl peroxide (BPO) and dicumyl peroxide (DCP) were used as the initiator of grafting reaction and crosslinking agents, respectively. Among them, the reason for the graft reaction that it is desirable to form hydrogen bonding by AA to enhance the self-healing effect by the attraction of hydrogen bonds. Because the material we used in this study has a shape memory effect, it is hoped that the shape memory effect can help the crack on the sample to close together, and then the mobility of molecules chain of the material can diffuse between the crack surface to achieve a higher healing effect. And this mechanism can be called shape memory assisted self-healing (SMASH). In addition, we add multi-walled carbon nanotubes (MWCNTs) into blends, and hope to have a multi-stimulus response mechanism. After adding MWCNTs, the blends can absorb near-infrared (NIR) light and convert it into thermal energy. In the dynamic mechanical analysis test, (D) NR had a low storage modulus at 25 oC, only 1.8 MPa, while (D) PCL had a storage modulus of 672.1 MPa. So it can improve the disadvantage of (D) NR with the addition of PCL. In the mechanical properties tests, the results showed that the (D) NR/PCL-g-2AA and (D) NR/PCL-g-4AA blends systems had a slight increase in Young's modulus compared with (D) NR/PCL blends. It was suggested that (D) NR/PCL-g-2AA and (D) NR/PCL-g-4AA blends had more hydrogen bondings to form physical crosslinking networks through the grafting reaction. In the shape memory tests, it can be seen that NR/PCL blends had excellent shape memory effects with the fixity ratio and recovery ratio of all samples are above 91 %. In the self-healing tests, the depth of the crack and the healing temperature directly affected the self-healing effect. All the samples heated at 80 °C were better than 60 °C. By grafting AA to generate the hydrogen bond. It can effectively improve the healing efficiency. Under the condition of 50% depth crack and 80 oC healing temperature for the (40/60) blend, the efficiency of (D) NR/PCL (40/60) increased from 28.5 % to 56.8 % by grafting 2 phr AA, and to 62.8% by grafting 4 phr AA. Due to the excellent shape memory effects of all the samples, it can helpe to heal by SMASH mechanism. The efficiency of NR/PCL-g-4AA (40/60) has increased from 62.8 % to 79.9 %.
Menon, Aishwarya Vijayan. "Polyurethane based Self-healing Nanocomposites for Electromagnetic Interference Shielding Applications". Thesis, 2019. https://etd.iisc.ac.in/handle/2005/5701.
Pełny tekst źródłaBalzano, B., John Sweeney, Glen P. Thompson, Cristina-Luminita Tuinea-Bobe i A. Jefferson. "Enhanced concrete crack closure with hybrid shape memory polymer tendons". 2020. http://hdl.handle.net/10454/18279.
Pełny tekst źródłaThe paper presents a new healing system that uses pre-tensioned hybrid tendons to close cracks in cementitious structural elements. The tendons comprise an inner core, formed from aramid fibre ropes, and an outer sleeve made from a shape memory PET. During the manufacturing process, the inner core of a tendon is put into tension and the outer sleeve into compression, such that the tendon is in equilibrium. A set of tendons are then cast in a cementitious structural element and heat activated once cracking occurs. This triggers the shrinkage potential of the PET sleeve, which in turn releases the stored strain energy in the inner core. The tensile force thereby released applies a compressive force to the cementitious element, in which the tendons are embedded, that acts to close any cracks that have formed perpendicular to the axis of the tendons. Details of the component materials used to form the tendon are given along with the tendon manufacturing process. A set of experiments are then reported that explore the performance of three different tendon configurations in prismatic mortar beams. The results from these experiments show that the tendons can completely close 0.3 mm cracks in the mortar beams and act as effective reinforcement both before and after activation. A nonlinear hinge-based numerical model is also described, which is shown to be able to reproduce the experimental behaviour with reasonable accuracy. The model is used to help interpret the results of the experiments and, in particular, to explore the effects of slip at the tendon anchorages and the amount of prestress force that remains after activation. It is shown that, with two of the tendon configurations tested, over 75% of the prestress potential of the tendon remains after crack closure.
UK-EPSRC (Grant No. EP/P02081X/1, Resilient Materials 4 Life, RM4L).
The full-text of this article will be released for public view at the end of the publisher embargo on 17 Oct 2021.
Teall, O., M. Pilegis, R. Davies, John Sweeney, T. Jefferson, R. Lark i D. Gardner. "A shape memory polymer concrete crack closure system activated by electrical current". 2018. http://hdl.handle.net/10454/16324.
Pełny tekst źródłaThe presence of cracks has a negative impact on the durability of concrete by providing paths for corrosive materials to the embedded steel reinforcement. Cracks in concrete can be closed using shape memory polymers (SMP) which produce a compressive stress across the crack faces. This stress has been previously found to enhance the load recovery associated with autogenous selfhealing. This paper details the experiments undertaken to incorporate SMP tendons containing polyethylene terephthalate (PET) filaments into reinforced and unreinforced 500 × 100 × 100 mm structural concrete beam samples. These tendons are activated via an electrical supply using a nickelchrome resistance wire heating system. The set-up, methodology and results of restrained shrinkage stress and crack closure experiments are explained. Crack closure of up to 85% in unreinforced beams and 26%–39% in reinforced beams is measured using crack-mouth opening displacement, microscope and digital image correlation equipment. Conclusions are made as to the effectiveness of the system and its potential for application within industry.
EPSRC for their funding of the Materials for Life (M4L) project (EP/K026631/1) and Costain Group PLC for industrial sponsorship of the project and author
TU, SHU-NING, i 涂書寧. "(I)Preparation of self-healing and shape memory properties for metallocene polyethylene(II)Preparation of TPE Foams". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/3f788t.
Pełny tekst źródłaBanerjee, S. L., Thomas Swift, Richard Hoskins, Stephen Rimmer i N. K. Singha. "A muscle mimetic polyelectrolyte–nanoclay organic–inorganic hybrid hydrogel: its self-healing, shape-memory and actuation properties". 2019. http://hdl.handle.net/10454/16784.
Pełny tekst źródłaHere in, we describe a non-covalent (ionic interlocking and hydrogen bonding) strategy of self-healing in a covalently crosslinked organic-inorganic hybrid 15 nanocomposite hydrogel, with special emphasize on it's improved mechanical stability. The hydrogel was prepared via in-situ free radical polymerization of sodium acrylate (SA) and successive crosslinking in the presence of poly(2-(methacryloyloxy)ethyl trimethyl ammonium chloride) (PMTAC) grafted cationically armed starch and organically modified montmorillonite (OMMT). This hydrogel shows stimuli triggered self-healing following damage in both neutral and acidic solutions (pH=7.4 and pH=1.2). This was elucidated by tensile strength and rheological analyses of the hydrogel segments joined at their fractured points. Interestingly this hydrogel can show water based shape memory effects. It was observed that the ultimate tensile strength (UTS) of the self-healed hydrogel at pH = 7.4 was comparable to extensor digitorum longus (EDL) muscle of the New Zealand white rabbit. The as synthesized self-healable hydrogel was found to be non-cytotoxic against NIH 3T3 fibroblast cells.
Medical Research Council (MRC (MR/N501888/2))
Maddalena, R., L. Bonanno, B. Balzano, Cristina-Luminita Tuinea-Bobe, John Sweeney i I. Mihai. "A crack closure system for cementitious composite materials using knotted shape memory polymer (k-SMP) fibres". 2020. http://hdl.handle.net/10454/18127.
Pełny tekst źródłaFormation of cracks represents one of the major causes of concrete deterioration, which can lead to durability and safety issues. In this work, a novel crack closure system is developed, using polyethylene terephthalate (PET) polymer fibres embedded in a mortar mix. The PET polymer has shape memory properties and shrinks upon thermal activation, if free to do so, or otherwise exerts shrinkage restraint forces. A single knot was manufactured at each end of the PET fibres to provide mechanical anchorage into the mortar matrix. Mortar samples with embedded knotted fibres were pre-cracked and subsequently placed in an oven to thermally activate the polymers and induce the shrinkage mechanism into the fibres. Crack closure was measured in the range 45–100%, depending on the geometry, dimension and distribution of the fibres, and the size of the initial crack.
This work is supported by UKRI-EPSRC (Grant No. EP/P02081X/1, Resilient Materials 4 Life, RM4L).
Książki na temat "Shape memory assisted self-healing"
Li, Guoqiang. Self-Healing Composites: Shape Memory Polymer Based Structures. Wiley & Sons, Incorporated, John, 2014.
Znajdź pełny tekst źródłaLi, Guoqiang. Self-Healing Composites: Shape Memory Polymer Based Structures. Wiley & Sons, Incorporated, John, 2014.
Znajdź pełny tekst źródłaLi, Guoqiang. Self-Healing Composites: Shape Memory Polymer Based Structures. Wiley, 2014.
Znajdź pełny tekst źródłaLi, Guoqiang. Self-Healing Composites: Shape Memory Polymer Based Structures. Wiley & Sons, Limited, John, 2014.
Znajdź pełny tekst źródłaSadasivuni, Kishor Kumar, Deepalekshmi Ponnamma, John-John Cabibihan i Mariam Al-Ali Al-Maadeed. Smart Polymer Nanocomposites: Energy Harvesting, Self-Healing and Shape Memory Applications. Springer, 2018.
Znajdź pełny tekst źródłaSadasivuni, Kishor Kumar, Deepalekshmi Ponnamma, John-John Cabibihan i Mariam Al-Ali Al-Maadeed. Smart Polymer Nanocomposites: Energy Harvesting, Self-Healing and Shape Memory Applications. Springer, 2017.
Znajdź pełny tekst źródłaSalim, Nisa, Jaworski C. Capricho, Sabu Thomas i Nishar Hameed. Multifunctional Epoxy Resins: Self Healing, Self Sensing, Shape Memory, Thermally and Electrically Conductive Resins. Springer, 2022.
Znajdź pełny tekst źródłaPollin-Galay, Hannah. Ecologies of Witnessing. Yale University Press, 2018. http://dx.doi.org/10.12987/yale/9780300226041.001.0001.
Pełny tekst źródłaCzęści książek na temat "Shape memory assisted self-healing"
Zhang, Sheng, Shi-Lin Zeng i Bang-Jing Li. "Cyclodextrins-Based Shape Memory Polymers and Self-Healing Polymers". W Handbook of Macrocyclic Supramolecular Assembly, 587–600. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2686-2_24.
Pełny tekst źródłaZhang, Sheng, Shi-Lin Zeng i Bang-Jing Li. "Cyclodextrins-Based Shape Memory Polymers and Self-Healing Polymers". W Handbook of Macrocyclic Supramolecular Assembly, 1–15. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1744-6_24-1.
Pełny tekst źródłaThomas, Deepu, John-John Cabibihan, Sasi Kumar, S. K. Khadheer Pasha, Dipankar Mandal, Meena Laad, Bal Chandra Yadav i in. "Biodegradable Nanocomposites for Energy Harvesting, Self-healing, and Shape Memory". W Smart Polymer Nanocomposites, 377–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50424-7_14.
Pełny tekst źródłaMohd Khairi, Nur Aliah, Hanizah Ab Hamid i Azmi Ibrahim. "Self-healing Shape-Memory Alloy (SMA) in Reinforced Concrete Structures: A Review". W InCIEC 2015, 641–52. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0155-0_54.
Pełny tekst źródłaGupta, Sujasha, i Bankim Chandra Ray. "Self-Healing and Shape Memory Effects of Carbon Nanotube–Based Polymer Composites". W Handbook of Carbon Nanotubes, 1113–46. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91346-5_18.
Pełny tekst źródłaGupta, Sujasha, i Bankim Chandra Ray. "Self-Healing and Shape Memory Effects of Carbon Nanotube Based Polymer Composites". W Handbook of Carbon Nanotubes, 1–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-70614-6_18-1.
Pełny tekst źródłaRabeeh, Bakr Mohamed, i Yasser Fouad. "The Synthesis and Processing of Self-Healing Materials: A Lamellar Shape Memory Alloy in Composite Structure". W Advanced Composites for Aerospace, Marine, and Land Applications II, 285–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093213.ch22.
Pełny tekst źródłaRabeeh, Bakr Mohamed, i Yasser Fouad. "The Synthesis and Processing of Self-Healing Materials: A Lamellar Shape Memory Alloy in Composite Structure". W Advanced Composites for Aerospace, Marine, and Land Applications II, 285–94. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48141-8_22.
Pełny tekst źródłaAntoun, Mario, i Liam J. Butler. "A New Class of Hybrid Self-healing Cementitious Materials Combining Shape Memory Alloy Wires and Super Absorbent Polymers". W International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures, 888–98. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33187-9_81.
Pełny tekst źródłaWu, Wenjing, James Ekeocha, Christopher Ellingford, Sreeni Narayana Kurup i Chaoying Wan. "Shape memory-assisted self-healing polymer systems". W Self-Healing Polymer-Based Systems, 95–121. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-818450-9.00004-0.
Pełny tekst źródłaStreszczenia konferencji na temat "Shape memory assisted self-healing"
Elsisy, Moataz, Evan Poska i Mostafa Bedewy. "Current-Dependent Kinetics of Self-Folding for Multi-Layer Polymers Using Local Resistive Heating". W ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6628.
Pełny tekst źródłaMuntges, Daniel E., Gyuhae Park i Daniel J. Inman. "Self-healing bolted joint employing a shape memory actuator". W SPIE's 8th Annual International Symposium on Smart Structures and Materials, redaktor L. Porter Davis. SPIE, 2001. http://dx.doi.org/10.1117/12.436530.
Pełny tekst źródłaChang, Hajoo, Changgil Lee i Seunghee Park. "Self-Monitoring and Self-Healing Bolted Joints Using Shape Memory Alloy". W 28th International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 2011. http://dx.doi.org/10.22260/isarc2011/0153.
Pełny tekst źródłaLiu, Yingtao, Abhishek Rajadas i Aditi Chattopadhyay. "Self-healing nanocomposite using shape memory polymer and carbon nanotubes". W SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, redaktorzy Jerome P. Lynch, Chung-Bang Yun i Kon-Well Wang. SPIE, 2013. http://dx.doi.org/10.1117/12.2009908.
Pełny tekst źródłaEspinha, André, Maria Concepción Serrano, Álvaro Blanco i Cefe López. "Shape-memory effect for self-healing and biodegradable photonic systems". W SPIE Photonics Europe, redaktorzy Sergei G. Romanov, Gabriel Lozano, Dario Gerace, Christelle Monat i Hernán R. Míguez. SPIE, 2014. http://dx.doi.org/10.1117/12.2058568.
Pełny tekst źródłaHarursampath, Dinesh, i Arvind Sharma. "Variational Asymptotic Simulation of a Self-Healing Shape Memory Alloy Composite". W 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1741.
Kirkby, Eva L., Joseph D. Rule, Véronique J. Michaud, Nancy R. Sottos, Scott R. White i Jan-Anders E. Månson. "Active repair of self-healing polymers with shape memory alloy wires". W The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, redaktor Marcelo J. Dapino. SPIE, 2007. http://dx.doi.org/10.1117/12.715408.
Pełny tekst źródłaHeo, Yunseon, i Henry A. Sodano. "Thermo-Responsive Shape Memory Self-Healing Polyurethanes and Composites With Continuous Carbon Fiber Reinforcement". W ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8916.
Pełny tekst źródłaThapa, Mishal, Bodiuzzaman Jony, Sameer B. Mulani i Samit Roy. "Experimental Characterization of Shape Memory Polymer Enhanced Thermoplastic Self-Healing Carbon/Epoxy Composites". W AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-1112.
Pełny tekst źródłaLi, Guoqiang, i Tao Xu. "A Shape Memory Polymer Based Self-Healing Syntactic Foam Sealant for Expansion Joint". W Structures Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41171(401)181.
Pełny tekst źródła