Gotowa bibliografia na temat „Shadow or reality?”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Shadow or reality?”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Shadow or reality?"
Supan, Peter, Ines Stuppacher i Michael Haller. "Image Based Shadowing in Real-Time Augmented Reality". International Journal of Virtual Reality 5, nr 3 (1.01.2006): 1–7. http://dx.doi.org/10.20870/ijvr.2006.5.3.2692.
Pełny tekst źródłaOsti, Francesco, Gian Maria Santi i Gianni Caligiana. "Real Time Shadow Mapping for Augmented Reality Photorealistic Rendering". Applied Sciences 9, nr 11 (30.05.2019): 2225. http://dx.doi.org/10.3390/app9112225.
Pełny tekst źródłaCasas Cambra, Llogari, Matthias Fauconneau, Maggie Kosek, Kieran Mclister i Kenny Mitchell. "Enhanced Shadow Retargeting with Light-Source Estimation Using Flat Fresnel Lenses". Computers 8, nr 2 (2.04.2019): 29. http://dx.doi.org/10.3390/computers8020029.
Pełny tekst źródłaKim, Hyungil, Jessica D. Isleib i Joseph L. Gabbard. "Virtual Shadow". Proceedings of the Human Factors and Ergonomics Society Annual Meeting 60, nr 1 (wrzesień 2016): 2093–97. http://dx.doi.org/10.1177/1541931213601474.
Pełny tekst źródłaPeretz, Eyal. "Introduction: Reality and Its Shadow". Yearbook of Comparative Literature 56, nr 1 (2010): 1–5. http://dx.doi.org/10.1353/cgl.2010.0001.
Pełny tekst źródłaWood, Geof. "Labels: A Shadow Across Reality". Development and Change 16, nr 3 (lipiec 1985): 343–45. http://dx.doi.org/10.1111/j.1467-7660.1985.tb00213.x.
Pełny tekst źródłaLee, Sangyoon, i Hyunki Hong. "Use of Gradient-Based Shadow Detection for Estimating Environmental Illumination Distribution". Applied Sciences 8, nr 11 (15.11.2018): 2255. http://dx.doi.org/10.3390/app8112255.
Pełny tekst źródłaThapa, Neelam. "Navigating Shadows: Unraveling the Fluidity of Reality and Borders in Amitav Ghosh's "The Shadow Lines" (1988)". International Journal of Science and Research (IJSR) 12, nr 11 (5.11.2023): 1862–65. http://dx.doi.org/10.21275/sr231126140140.
Pełny tekst źródłaRoper, Matthew. "Mormonism: Shadow or Reality?. 5th ed." Review of Books on the Book of Mormon 4 (1992) (1.01.1992): 169–215. http://dx.doi.org/10.2307/44796520.
Pełny tekst źródłaObukhov, Artem D., Andrey A. Volkov, Nadezhda A. Vekhteva, Daniil V. Teselkin i Alexey E. Arkhipov. "Human motion capture algorithm for creating digital shadows of the movement process". Journal of Physics: Conference Series 2388, nr 1 (1.12.2022): 012033. http://dx.doi.org/10.1088/1742-6596/2388/1/012033.
Pełny tekst źródłaRozprawy doktorskie na temat "Shadow or reality?"
Chrysanthou, Yiorgos. "Shadow computation for 3D interaction and animation". Thesis, Queen Mary, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244505.
Pełny tekst źródłaCatchpole, Jason James. "Adaptive Vision Based Scene Registration for Outdoor Augmented Reality". The University of Waikato, 2008. http://hdl.handle.net/10289/2581.
Pełny tekst źródłaCöster, Jonatan. "The effects of shadows on depth perception in augmented reality on a mobile device". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249663.
Pełny tekst źródłaMänniskor använder flera olika indikatorer för att uppfatta djup i datorgrafik, bland annat skärpedjup, den relativa storleken hos objekt i perspektiv och skuggor. Denna studie fokuserar på skuggor i förstärkt verklighet. Ett experiment genomfördes, vars syfte var att mäta effekterna av att låta virtuella objekt kasta skuggor på fysiska objekt. Användare fick utföra en uppgift som gick ut på att placera ett virtuellt objekt på ett fysiskt bord i förstärkt verklighet som visades på en mobil enhet. Det virtuella objektet var antingen en kub eller en sfär. För att mäta effekterna av att objekten kastade skuggor så mättes tiden det tog användare att slutföra uppgiften, samt positioneringsfelet. Med hjälp av frågeformulär gjordes även kvalitativa mätningar. Resultaten visade att både positioneringsfelet och tiden för att slutföra uppgiften minskade när objekten kastade skuggor. Resultaten visade också att användarna verkade mer säkra när de placerade objekten, när objekten kastade skuggor. De kvantitativa och kvalitativa resultaten från experimentet visade att användarna tyckte att det var lättare att avgöra positionen på det virtuella objektet i förhållande till det fysiska objektet när det virtuella objektet kastade skuggor.
Black, John. "Chasing shadows : a look at the treatment of light and shade in painters' quest for spatial realism in 13th and 14th century Italy". Thesis, University of Glasgow, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247734.
Pełny tekst źródłaDikman, David. "Ambient Occlusion i Realtid". Thesis, University of Skövde, School of Humanities and Informatics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-1109.
Pełny tekst źródłaAmbient Occlusion är en teknik för ambient ljussättning i digitala tredimensionella scener. Sådana scener ljussätts vanligtvis med en konstant mängd ambient ljus på samtliga ytor oberoende av ytornas vinkel och position gentemot olika ljuskällor i scenen. Detta ger ett platt och kalt intryck och utan vidare ljussättningstekniker är det ytterst svårt att urskönja detaljer i scenen. Ambient Occlusion åthjälper detta genom att reducera mängden ambient ljus i vissa delar av scenen. Ambient ljus är en enkel approximation av det reflekterade diffusa ljuset som antas nå nästan överallt i scenen. Genom att sänka det ambienta ljuset på punkter i scenen med tät eller täckande geometri så ger Ambient Occlusion ett intryck av att det sekundära diffusa ljuset ej når dessa platser. Pappret undersöker en äldre variant av Ambient Occlusion där mängden ambient ljus beräknas statiskt för en scen och sparas i texturer. Vidare undersöks nyare metoder där mängden ambient ljus beräknas dynamiskt på den renderade scenen i Pixel Shaders. Det senare tillvägagångssättet kallas Image Based Ambient Occlusion eller Screen Space Ambient Occlusion. Detta nya tillvägagångssätt jämförs mot den traditionella angreppsvinkeln med förberäknade texturer. Teknikerna utvärderas och jämförs mot varandra i avseende på tids- och minneskomplexitet, enkelhet och visuellt resultat utöver specifika egenskaper för de enskilda teknikerna. Arbetets resultat beskrivs i slutet av rapporten. I resultatet presenteras hur shaderteknikerna pga sina brister inte är applicerbara i alla scener.
Löf, Melker Tobias. "Färgblindkorrigering i realtid". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-14084.
Pełny tekst źródłaSalát, Marek. "Prototypování fotografické kompozice pomocí rozšířené reality". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2016. http://www.nusl.cz/ntk/nusl-255388.
Pełny tekst źródłaCurry, Tommy J. "Cast Upon The Shadows: Essays Toward The Culturalogic Turn In Critical Race Theory". OpenSIUC, 2009. https://opensiuc.lib.siu.edu/dissertations/59.
Pełny tekst źródłaJiddi, Salma. "Photometric registration of indoor real scenes using an RGB-D camera with application to mixed reality". Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S015/document.
Pełny tekst źródłaThe overarching goal of Mixed Reality (MR) is to provide the users with the illusion that virtual and real objects coexist indistinguishably in the same space. An effective illusion requires an accurate registration between both worlds. This registration must be geometrically and photometrically coherent. In this thesis, we propose novel photometric registration methods to estimate the illumination and reflectance of real scenes. Specifically, we propose new approaches which address three main challenges: (1) use of a single RGB-D camera. (2) estimation of both diffuse and specular reflectance properties. (3) estimation of the 3D position and color of multiple dynamic light sources. Within our first contribution, we consider indoor real scenes where both geometry and illumination are static. As the sensor browses the scene, specular reflections can be observed throughout a sequence of RGB-D images. These visual cues are very informative about the illumination and reflectance of scene surfaces. Hence, we model these cues to recover both diffuse and specular reflectance properties as well as the 3D position of multiple light sources. Our algorithm allows convincing MR results such as realistic virtual shadows and correct real specularity removal. Shadows are omnipresent and result from the occlusion of light by existing geometry. They therefore represent interesting cues to reconstruct the photometric properties of the scene. Presence of texture in this context is a critical scenario. In fact, separating texture from illumination effects is often handled via approaches which require user interaction or do not satisfy mixed reality processing time requirements. We address these limitations and propose a method which estimates the 3D position and intensity of light sources. The proposed approach handles dynamic light sources and runs at an interactive frame rate. The existence of a light source is more likely if it is supported by more than one cue. We therefore address the problem of estimating illumination and reflectance properties by jointly analysing specular reflections and cast shadows. The proposed approach takes advantage of information brought by both cues to handle a large variety of scenes. Our approach is capable of handling any textured surface and considers both static and dynamic light sources. Its effectiveness is demonstrated through a range of applications including real-time mixed reality and retexturing. Since the detection of cast shadows and specular reflections are at the heart of this thesis, we further propose a deep-learning framework to jointly detect both cues in indoor real scenes
Henriksson, Petter. "INVERKAN AV UPPLÖSNING OCH RENDERINGS PRECISION PÅ VOLYMETRISK ELD I REALTID i realtids Spel : En balans mellan prestanda och utseende". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-9456.
Pełny tekst źródłaKsiążki na temat "Shadow or reality?"
Williams, Robert Ian. Bible-only Christianity: Shadow or reality? Bangor is y Coed, UK: Ecclesia Press, 1997.
Znajdź pełny tekst źródłaSanford, John A. Evil : the shadow side of reality. New York: Crossroad, 1985.
Znajdź pełny tekst źródłaWilliams, Tad. City of golden shadow. New York: DAW Books, 1996.
Znajdź pełny tekst źródłaWilliams, Tad. Otherland: City of golden shadow. New York: DAW Books, 1998.
Znajdź pełny tekst źródłaWilliams, Tad. Otherland: City of golden shadow. New York: DAW Books, 1998.
Znajdź pełny tekst źródłaWillis, William James. The shadow world: Life between the news media and reality. New York: Praeger, 1991.
Znajdź pełny tekst źródłaRees, Rod. The shadow wars. New York, NY: William Morrow, an imprint of HarperCollinsPublishers, 2013.
Znajdź pełny tekst źródłaLeach, Karoline. In the shadow of the dreamchild: The myth and reality of Lewis Carroll. London: Peter Owen, 2009.
Znajdź pełny tekst źródłaShalit, Erel. The hero and his shadow: Psychopolitical aspects of myth and reality in Israel. Lanham: University Press of America, 1999.
Znajdź pełny tekst źródłaVasarely, Fondation, red. Réalités hybrides =: Hybrid realities. [Paris]: Archibooks, 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "Shadow or reality?"
Levinas, Emmanuel. "Reality and Its Shadow". W Phaenomenologica, 1–13. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4364-3_1.
Pełny tekst źródłaGarfinkle, Adam. "The June War and the New Reality". W Israel and Jordan in the Shadow of War, 51–98. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-21770-0_3.
Pełny tekst źródłaSyahputra, Mohammad Fadly, Muhammad Iqbal Rizki Siregar i Romi Fadillah Rahmat. "Realistic Shadow Augmented Reality of Rare Animals from Indonesia". W Lecture Notes in Computer Science, 382–93. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95270-3_32.
Pełny tekst źródłaYang, Minghao, Guangzheng Fei, Minyong Shi i Yongsong Zhan. "A Simple, Efficient Method for Real-Time Simulation of Smoke Shadow". W Advances in Artificial Reality and Tele-Existence, 633–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11941354_65.
Pełny tekst źródłaStanaya, I. Komang Try Adi, I. Wayan Mudra i I. Gst Ngr Dwijaksara. "Evaluation of UI/UX Usability in Augmented Reality Application of Balinese Shadow Puppet Panca Pandawa". W Proceedings of the 4th Borobudur International Symposium on Humanities and Social Science 2022 (BIS-HSS 2022), 261–67. Paris: Atlantis Press SARL, 2023. http://dx.doi.org/10.2991/978-2-38476-118-0_29.
Pełny tekst źródłaSato, Imari, Yoichi Sato i Katsushi Ikeuchi. "Illumination Distribution from Shadows". W Modeling from Reality, 161–77. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0797-0_7.
Pełny tekst źródłaDove, Michael R. "“Bitter Shade”". W Bitter Shade, 92–109. Yale University Press, 2021. http://dx.doi.org/10.12987/yale/9780300251746.003.0005.
Pełny tekst źródłaLevinas, Emmanuel. "Reality and its Shadow". W The Continental Aesthetics Reader, 139–51. Routledge, 2017. http://dx.doi.org/10.4324/9781351226387-8.
Pełny tekst źródłaWeinstock, Jeffrey Andrew. "Shadow Play". W Nosferatu in the 21st Century, 25–40. Liverpool University Press, 2023. http://dx.doi.org/10.3828/liverpool/9781800856400.003.0003.
Pełny tekst źródłaSorensen, Roy. "Plato". W Nothing, 119–37. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780199742837.003.0009.
Pełny tekst źródłaStreszczenia konferencji na temat "Shadow or reality?"
Sakaguchi, Saki, Takuma Tanaka i Mitsunori Matsushita. "Layered shadow". W VRIC 2013: Virtual Reality International Conference - Laval Virtual. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2466816.2466830.
Pełny tekst źródłaYasumoto, Masasuke, i Takehiro Teraoka. "Shadow Shooter". W VRIC '15: Virtual Reality International Conference - Laval Virtual 2015. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2806173.2806193.
Pełny tekst źródłaNing, Ma, Peng Yue i Zhang Leilei. "Shadow play". W 2020 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2020. http://dx.doi.org/10.1109/icvrv51359.2020.00105.
Pełny tekst źródłaObushi, Noriyasu, i Makoto Koshino. "Temari and Shadow". W VRIC '18: Virtual Reality International Conference - Laval Virtual VRIC '18. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3234253.3234321.
Pełny tekst źródłaManabe, Shinnosuke, Sei Ikeda, Asako Kimura i Fumihisa Shibata. "Shadow Inducers: Inconspicuous Highlights for Casting Virtual Shadows on OST-HMOs". W 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2019. http://dx.doi.org/10.1109/vr.2019.8798049.
Pełny tekst źródłaHaller, Michael, Stephan Drab i Werner Hartmann. "A real-time shadow approach for an augmented reality application using shadow volumes". W the ACM symposium. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/1008653.1008665.
Pełny tekst źródłaNoh, Zakiah, i Mohd Shahrizal Sunar. "A Review of Shadow Techniques in Augmented Reality". W 2009 Second International Conference on Machine Vision. IEEE, 2009. http://dx.doi.org/10.1109/icmv.2009.41.
Pełny tekst źródłaHe, Yihao. "Shadow Costar: Exploring Collaborative Performances in Virtual Reality". W HAI '23: International Conference on Human-Agent Interaction. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3623809.3623943.
Pełny tekst źródłaYan, Zifei, Ziyuan Jia, Yuehua Chen i Haolun Ding. "The Interactive Narration of Chinese Shadow Play". W 2016 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2016. http://dx.doi.org/10.1109/icvrv.2016.63.
Pełny tekst źródłaXiong, Yuan, Hongrui Chen, Jingru Wang, Zhe Zhu i Zhong Zhou. "DSNet: Deep Shadow Network for Illumination Estimation". W 2021 IEEE Virtual Reality and 3D User Interfaces (VR). IEEE, 2021. http://dx.doi.org/10.1109/vr50410.2021.00039.
Pełny tekst źródłaRaporty organizacyjne na temat "Shadow or reality?"
Petrunoff, Nick, Amanda Dominello, Ally Hamer, Liz King, Nikki Woolley i Sian Rudge. Strategies to increase shade in public playgrounds: A realist review. The Sax Institute, grudzień 2022. http://dx.doi.org/10.57022/ssdy7898.
Pełny tekst źródłaBeavers, Calvin, Chad Day, Austin Krietemeyer, Scott Peterson, Yushin Ahn i Xiaojun Li. Mapping of Pavement Conditions Using Smartphone/Tablet LiDAR Case Study: Sensor Performance Comparison. Mineta Transportation Institute, lipiec 2024. http://dx.doi.org/10.31979/mti.2024.2224.
Pełny tekst źródła