Artykuły w czasopismach na temat „Severe Actute Respiratory Syndrome (SARS)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Severe Actute Respiratory Syndrome (SARS)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ivanov, Konstantin A., Volker Thiel, Jessika C. Dobbe, Yvonne van der Meer, Eric J. Snijder i John Ziebuhr. "Multiple Enzymatic Activities Associated with Severe Acute Respiratory Syndrome Coronavirus Helicase". Journal of Virology 78, nr 11 (1.06.2004): 5619–32. http://dx.doi.org/10.1128/jvi.78.11.5619-5632.2004.
Pełny tekst źródłaA El-Masry, Eman. "Immunization against severe acute respiratory syndrome Coronavirus 2: an overview". African Health Sciences 21, nr 4 (14.12.2021): 1574–83. http://dx.doi.org/10.4314/ahs.v21i4.11.
Pełny tekst źródłaZoghi, Sina, Hossein Jafari Khamirani, Seyed Alireza Dastgheib, Mehdi Dianatpour i Alireza Ghaffarieh. "An analysis of inhibition of the severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase by zinc ion: an in silico approach". Future Virology 16, nr 5 (maj 2021): 331–39. http://dx.doi.org/10.2217/fvl-2020-0369.
Pełny tekst źródłaLamirande, Elaine W., Marta L. DeDiego, Anjeanette Roberts, Jadon P. Jackson, Enrique Alvarez, Tim Sheahan, Wun-Ju Shieh i in. "A Live Attenuated Severe Acute Respiratory Syndrome Coronavirus Is Immunogenic and Efficacious in Golden Syrian Hamsters". Journal of Virology 82, nr 15 (7.05.2008): 7721–24. http://dx.doi.org/10.1128/jvi.00304-08.
Pełny tekst źródłaPoutanen, Susan M., Mary Vearncombe, Allison J. McGeer, Michael Gardam, Grant Large i Andrew E. Simor. "Nosocomial Acquisition of Methicillin-ResistantStaphylococcus aureusDuring an Outbreak of Severe Acute Respiratory Syndrome". Infection Control & Hospital Epidemiology 26, nr 2 (luty 2005): 134–37. http://dx.doi.org/10.1086/502516.
Pełny tekst źródłaMostafa, Ahmed, Ahmed Kandeil, Yaseen A. M. M. Elshaier, Omnia Kutkat, Yassmin Moatasim, Adel A. Rashad, Mahmoud Shehata i in. "FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2". Pharmaceuticals 13, nr 12 (4.12.2020): 443. http://dx.doi.org/10.3390/ph13120443.
Pełny tekst źródłaFylenko, B. M., V. I. Babenko, N. V. Royko, I. I. Starchenko, S. A. Proskurnya i A. O. Byelyayeva. "Morphological Manifestations of COVID-19-Associated Pneumonia". Ukraïnsʹkij žurnal medicini, bìologìï ta sportu 7, nr 2 (6.05.2022): 82–87. http://dx.doi.org/10.26693/jmbs07.02.082.
Pełny tekst źródłaIsnaini, Nadia, Khairan Khairan, Meutia Faradhilla, Elly Sufriadi, Vicky Prajaputra, Binawati Ginting, Syaifullah Muhammad i Raihan Dara Lufika. "A Study of Essential Oils from Patchouli (Pogostemon cablin Benth.) and Its Potential as an Antivirus Agent to Relieve Symptoms of COVID-19". Journal of Patchouli and Essential Oil Products 1, nr 2 (23.12.2022): 27–35. http://dx.doi.org/10.24815/jpeop.v1i2.23763.
Pełny tekst źródłaRha, Brian, Joana Y. Lively, Janet A. Englund, Mary A. Staat, Geoffrey A. Weinberg, Rangaraj Selvarangan, Natasha B. Halasa i in. "Severe Acute Respiratory Syndrome Coronavirus 2 Infections in Children: Multicenter Surveillance, United States, January–March 2020". Journal of the Pediatric Infectious Diseases Society 9, nr 5 (18.06.2020): 609–12. http://dx.doi.org/10.1093/jpids/piaa075.
Pełny tekst źródłaHashimi, Marziah, Thomas Sebrell, Jodi Hedges, Deann Teresa Snyder, Katrina Lyon, Michelle D. Cherne, Amanda Robison i in. "Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection in a Bat Gastrointestinal Organoid Model". Journal of Immunology 208, nr 1_Supplement (1.05.2022): 125.34. http://dx.doi.org/10.4049/jimmunol.208.supp.125.34.
Pełny tekst źródłaBorbone, Nicola, Gennaro Piccialli, Giovanni Nicola Roviello i Giorgia Oliviero. "Nucleoside Analogs and Nucleoside Precursors as Drugs in the Fight against SARS-CoV-2 and Other Coronaviruses". Molecules 26, nr 4 (13.02.2021): 986. http://dx.doi.org/10.3390/molecules26040986.
Pełny tekst źródłaMcGill, Andrew R., Roukiah Kahlil, Rinku Dutta, Ryan Green, Mark Howell, Subhra Mohapatra i Shyam S. Mohapatra. "SARS–CoV-2 Immuno-Pathogenesis and Potential for Diverse Vaccines and Therapies: Opportunities and Challenges". Infectious Disease Reports 13, nr 1 (4.02.2021): 102–25. http://dx.doi.org/10.3390/idr13010013.
Pełny tekst źródłaYao, Lin, Peijun Tang, Hui Jiang, Binbin Gu, Ping Xu, Xiafang Wang, Xin Yu, Jianping Zhang, Yu Pang i Meiying Wu. "Household Clusters of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Suzhou, China". BioMed Research International 2021 (16.10.2021): 1–7. http://dx.doi.org/10.1155/2021/5565549.
Pełny tekst źródłaKwaan, Hau C., i Paul F. Lindholm. "The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective". International Journal of Molecular Sciences 22, nr 3 (28.01.2021): 1283. http://dx.doi.org/10.3390/ijms22031283.
Pełny tekst źródłaParihar, Arpana, Tabassum Zafar, Rekha Khandia, Dipesh Singh Parihar, Rupali Dhote, Yogesh Mishra i Raju Khan. "In silico Analysis for the Repurposing of Broad-spectrum Antiviral Drugs against Multiple Targets from SARS-CoV-2: A Molecular Docking and ADMET Approach". Archives of Proteomics and Bioinformatics 3, nr 1 (11.05.2023): 3–14. http://dx.doi.org/10.33696/proteomics.3.012.
Pełny tekst źródłaChoy, Wai-Yan, Shu-Guang Lin, Paul Kay-Sheung Chan, John Siu-Lun Tam, Y. M. Dennis Lo, Ida Miu-Ting Chu, Sau-Na Tsai i in. "Synthetic Peptide Studies on the Severe Acute Respiratory Syndrome (SARS) Coronavirus Spike Glycoprotein: Perspective for SARS Vaccine Development". Clinical Chemistry 50, nr 6 (1.06.2004): 1036–42. http://dx.doi.org/10.1373/clinchem.2003.029801.
Pełny tekst źródłaIngallinella, P., E. Bianchi, M. Finotto, G. Cantoni, D. M. Eckert, V. M. Supekar, C. Bruckmann, A. Carfi i A. Pessi. "Structural characterization of the fusion-active complex of severe acute respiratory syndrome (SARS) coronavirus". Proceedings of the National Academy of Sciences 101, nr 23 (25.05.2004): 8709–14. http://dx.doi.org/10.1073/pnas.0402753101.
Pełny tekst źródłaNeuman, Benjamin W., David A. Stein, Andrew D. Kroeker, Michael J. Churchill, Alice M. Kim, Peter Kuhn, Philip Dawson i in. "Inhibition, Escape, and Attenuated Growth of Severe Acute Respiratory Syndrome Coronavirus Treated with Antisense Morpholino Oligomers". Journal of Virology 79, nr 15 (1.08.2005): 9665–76. http://dx.doi.org/10.1128/jvi.79.15.9665-9676.2005.
Pełny tekst źródłaSchulze, Jessica, Christin Mache, Anita Balázs, Doris Frey, Daniela Niemeyer, Heidi Olze, Steffen Dommerich i in. "Analysis of Severe Acute Respiratory Syndrome 2 Replication in Explant Cultures of the Human Upper Respiratory Tract Reveals Broad Tissue Tropism of Wild-Type and B.1.1.7 Variant Viruses". Journal of Infectious Diseases 224, nr 12 (15.10.2021): 2020–24. http://dx.doi.org/10.1093/infdis/jiab523.
Pełny tekst źródłaLungu, Claudiu N., Melinda E. Füstös, Ireneusz P. Grudziński, Gabriel Olteanu i Mihai V. Putz. "Protein Interaction with Dendrimer Monolayers: Energy and Surface Topology". Symmetry 12, nr 4 (17.04.2020): 641. http://dx.doi.org/10.3390/sym12040641.
Pełny tekst źródłaRajasekharan, Sreejith, Rafaela Milan Bonotto, Lais Nascimento Alves, Yvette Kazungu, Monica Poggianella, Pamela Martinez-Orellana, Natasa Skoko, Sulena Polez i Alessandro Marcello. "Inhibitors of Protein Glycosylation Are Active against the Coronavirus Severe Acute Respiratory Syndrome Coronavirus SARS-CoV-2". Viruses 13, nr 5 (30.04.2021): 808. http://dx.doi.org/10.3390/v13050808.
Pełny tekst źródłaPriyandoko, Didik, Wahyu Widowati, Mawar Subangkit, Diana Jasaputra, Teresa Wargasetia, Ika Sholihah i Jenifer Aviani. "Molecular Docking Study of the Potential Relevance of the Natural Compounds Isoflavone and Myricetin to COVID-19". International Journal Bioautomation 25, nr 3 (wrzesień 2021): 271–82. http://dx.doi.org/10.7546/ijba.2021.25.3.000796.
Pełny tekst źródłaNakayoshi, Tomoki, Koichi Kato, Eiji Kurimoto i Akifumi Oda. "Virtual Alanine Scan of the Main Protease Active Site in Severe Acute Respiratory Syndrome Coronavirus 2". International Journal of Molecular Sciences 22, nr 18 (11.09.2021): 9837. http://dx.doi.org/10.3390/ijms22189837.
Pełny tekst źródłaDonadel, Marcelo Menegotto, Lucas Montiel Petry, Carolina Boeira Soares, Laura de Castro e. Garcia, Luana Braga Bittencourt i Luiz Carlos Bodanese. "Analysis of the impact of pronation maneuver in patients on mechanical ventilation with diagnosis of pneumonia by Covid-19 and acute respiratory distress syndrome". Brazilian Journal of Health Review 5, nr 6 (9.12.2022): 24053–64. http://dx.doi.org/10.34119/bjhrv5n6-175.
Pełny tekst źródłaDenisov, M. S., i Ya A. Beloglazova. "Anticoronaviral activity of triterpenoids". Biomedical Chemistry: Research and Methods 3, nr 2 (2020): e00127. http://dx.doi.org/10.18097/bmcrm00127.
Pełny tekst źródłaSnow-Smith, Maryonne, Paul J. Baker, Andrea C. Bohrer, Ehydel Castro, Flor Torres-Juarez, Charles F. Anderson, Michelle M. Makiya, Irini Sereti, Amy D. Klion i Katrin D. Mayer-Barber. "Investigating a Role for Eosinophils in the Immune Response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)". Journal of Immunology 210, nr 1_Supplement (1.05.2023): 73.10. http://dx.doi.org/10.4049/jimmunol.210.supp.73.10.
Pełny tekst źródłaShobiroh Nuur'Alimah, Agnia Nurul Jannati, Laksmi Ambarsari i Syamsul Falah. "In silico study: molecular docking of SARS-Cov-2 endoribonuclease on active compounds of Gmelina arborea Roxb. bark". E-Journal Menara Perkebunan 92, nr 1 (30.04.2024): 70–81. http://dx.doi.org/10.22302/iribb.jur.mp.v92i1.561.
Pełny tekst źródłaSada, Mitsuru, Takeshi Saraya, Haruyuki Ishii, Kaori Okayama, Yuriko Hayashi, Takeshi Tsugawa, Atsuyoshi Nishina i in. "Detailed Molecular Interactions of Favipiravir with SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza Virus Polymerases In Silico". Microorganisms 8, nr 10 (20.10.2020): 1610. http://dx.doi.org/10.3390/microorganisms8101610.
Pełny tekst źródłaCitarella, Andrea, Alessandro Dimasi, Davide Moi, Daniele Passarella, Angela Scala, Anna Piperno i Nicola Micale. "Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives". Biomolecules 13, nr 9 (2.09.2023): 1339. http://dx.doi.org/10.3390/biom13091339.
Pełny tekst źródłaBedford, Trevor, Alexander L. Greninger, Pavitra Roychoudhury, Lea M. Starita, Michael Famulare, Meei-Li Huang, Arun Nalla i in. "Cryptic transmission of SARS-CoV-2 in Washington state". Science 370, nr 6516 (10.09.2020): 571–75. http://dx.doi.org/10.1126/science.abc0523.
Pełny tekst źródłaShigeta, Shiro, i Toshihiro Yamase. "Current Status of Anti-SARS Agents". Antiviral Chemistry and Chemotherapy 16, nr 1 (luty 2005): 23–31. http://dx.doi.org/10.1177/095632020501600103.
Pełny tekst źródłaKullappan, Malathi, Jenifer M Ambrose i Surapaneni Krishna Mohan. "Lead Identification for Severe Acute Respiratory Syndrome Coronavirus-2 Spike D614G Variant of COVID-19: A virtual Screening Process". Biomedical and Pharmacology Journal 14, nr 4 (30.12.2021): 1929–39. http://dx.doi.org/10.13005/bpj/2291.
Pełny tekst źródłaOżarowski, Marcin, i Tomasz M. Karpiński. "The Effects of Propolis on Viral Respiratory Diseases". Molecules 28, nr 1 (1.01.2023): 359. http://dx.doi.org/10.3390/molecules28010359.
Pełny tekst źródłaJugler, Collin, Haiyan Sun i Qiang Chen. "SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked by a Plant-Produced Anti-Interleukin 6 Receptor Monoclonal Antibody". Vaccines 9, nr 11 (20.11.2021): 1365. http://dx.doi.org/10.3390/vaccines9111365.
Pełny tekst źródłaSalman, Saad, Fahad Hassan Shah, Maham Chaudhry, Muniba Tariq, Muhammad Yasir Akbar i Muhammad Adnan. "In silico analysis of protein/peptide-based inhalers against SARS-CoV-2". Future Virology 15, nr 9 (wrzesień 2020): 557–64. http://dx.doi.org/10.2217/fvl-2020-0119.
Pełny tekst źródłaZhong, Nan, Shengnan Zhang, Peng Zou, Jiaxuan Chen, Xue Kang, Zhe Li, Chao Liang, Changwen Jin i Bin Xia. "Without Its N-Finger, the Main Protease of Severe Acute Respiratory Syndrome Coronavirus Can Form a Novel Dimer through Its C-Terminal Domain". Journal of Virology 82, nr 9 (27.02.2008): 4227–34. http://dx.doi.org/10.1128/jvi.02612-07.
Pełny tekst źródłaDhakad, Prashant Kumar, Raghav Mishra i Isha Mishra. "A Concise Review: Nutritional Interventions for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)". Natural Resources for Human Health 3, nr 4 (18.11.2023): 403–25. http://dx.doi.org/10.53365/nrfhh/175070.
Pełny tekst źródłaSalman, Saad, Fahad H. Shah, Jawaria Idrees, Fariha Idrees, Shreya Velagala, Johar Ali i Abid A. Khan. "Virtual screening of immunomodulatory medicinal compounds as promising anti-SARS-CoV-2 inhibitors". Future Virology 15, nr 5 (maj 2020): 267–75. http://dx.doi.org/10.2217/fvl-2020-0079.
Pełny tekst źródłaPignolo, Antonia, Maria Aprile, Cesare Gagliardo, Giovanni Maurizio Giammanco, Marco D’Amelio, Paolo Aridon, Giuseppe La Tona, Giuseppe Salemi i Paolo Ragonese. "Clinical Onset and Multiple Sclerosis Relapse after SARS-CoV-2 Infection". Neurology International 13, nr 4 (6.12.2021): 695–700. http://dx.doi.org/10.3390/neurolint13040066.
Pełny tekst źródłaGordon, Calvin J., Egor P. Tchesnokov, Emma Woolner, Jason K. Perry, Joy Y. Feng, Danielle P. Porter i Matthias Götte. "Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency". Journal of Biological Chemistry 295, nr 20 (13.04.2020): 6785–97. http://dx.doi.org/10.1074/jbc.ra120.013679.
Pełny tekst źródłaPratapa, Sree Karthik, Sourya Acharya, Sai Spoorthy Mamidipalli i Amol Andhale. "Caring for Cancer Patients during Corona Pandemic—(COVID-19)—A Narrative Review". South Asian Journal of Cancer 10, nr 01 (styczeń 2021): 19–22. http://dx.doi.org/10.1055/s-0040-1721292.
Pełny tekst źródłaWang, Wenxiang, Ce Yang, Jing Xia, Ning Li i Wei Xiong. "Luteolin is a potential inhibitor of COVID-19: An in silico analysis". Medicine 102, nr 38 (22.09.2023): e35029. http://dx.doi.org/10.1097/md.0000000000035029.
Pełny tekst źródłaElaiw, Ahmed, Abdualla Alsaedi, Aatef Hobiny i Shaban Aly. "Global Properties of a Diffusive SARS-CoV-2 Infection Model with Antibody and Cytotoxic T-Lymphocyte Immune Responses". Mathematics 11, nr 1 (29.12.2022): 190. http://dx.doi.org/10.3390/math11010190.
Pełny tekst źródłaSaad-Roy, Chadi M., Caroline E. Wagner, Rachel E. Baker, Sinead E. Morris, Jeremy Farrar, Andrea L. Graham, Simon A. Levin, Michael J. Mina, C. Jessica E. Metcalf i Bryan T. Grenfell. "Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years". Science 370, nr 6518 (21.09.2020): 811–18. http://dx.doi.org/10.1126/science.abd7343.
Pełny tekst źródłaGorbunov, A. A., L. E. Sorokina, D. V. Chegodar, A. V. Kubyshkin i I. I. Fomochkina. "COVID-19 DIAGNOSTICS: CURRENT STATE OF THE PROBLEM AND PROSPECTS IN THE BRANCH". Crimea Journal of Experimental and Clinical Medicine 10, nr 2 (2020): 69–77. http://dx.doi.org/10.37279/2224-6444-2020-10-2-69-77.
Pełny tekst źródłaSingh, Akhilesh Vikram. "Potential of amentoflavone with antiviral properties in COVID-19 treatment". Asian Biomedicine 15, nr 4 (1.08.2021): 153–59. http://dx.doi.org/10.2478/abm-2021-0020.
Pełny tekst źródłaRoy, Santanu, Prakash Chandra Ghosh, Mitali Bera i Sananda Majumder. "Pulmonary involvement in multisystem inflammatory syndrome in children, a diagnostic conundrum: case series from a tertiary care hospital in eastern India". International Journal of Contemporary Pediatrics 9, nr 8 (25.07.2022): 762. http://dx.doi.org/10.18203/2349-3291.ijcp20221861.
Pełny tekst źródłaColarossi, Bianca. "How Our Healthcare System Failed During the SARS Outbreak". Sciential - McMaster Undergraduate Science Journal, nr 1 (25.11.2018): 23–24. http://dx.doi.org/10.15173/sciential.v1i1.1921.
Pełny tekst źródłaSasisekharan, Varun, Niharika Pentakota, Akila Jayaraman, Kannan Tharakaraman, Gerald N. Wogan i Uma Narayanasami. "Orthogonal immunoassays for IgG antibodies to SARS-CoV-2 antigens reveal that immune response lasts beyond 4 mo post illness onset". Proceedings of the National Academy of Sciences 118, nr 5 (14.01.2021): e2021615118. http://dx.doi.org/10.1073/pnas.2021615118.
Pełny tekst źródłaDawood, A. A. "Identification of Cytotoxic T-Cell and B-Cell Epitopes in the Nucleocapsid Phosphoprotein of SARS-COV-2 Using Immunoinformatics". Mikrobiolohichnyi Zhurnal 83, nr 1 (17.02.2021): 78–86. http://dx.doi.org/10.15407/microbiolj83.01.078.
Pełny tekst źródła