Gotowa bibliografia na temat „Sequential labeling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sequential labeling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Sequential labeling"
Sumathi, P., i G. Geetha Ramani. "Arithmetic Sequential Graceful Labeling on Star Related Graphs". Indian Journal Of Science And Technology 15, nr 44 (28.11.2022): 2356–62. http://dx.doi.org/10.17485/ijst/v15i44.1863.
Pełny tekst źródłaKantabutra, Sanpawat. "Fast Sequential and Parallel Vertex Relabelings of Km,m". International Journal of Foundations of Computer Science 26, nr 01 (styczeń 2015): 33–50. http://dx.doi.org/10.1142/s0129054115500021.
Pełny tekst źródłaWu, Xian, Wei Fan i Yong Yu. "Sembler: Ensembling Crowd Sequential Labeling for Improved Quality". Proceedings of the AAAI Conference on Artificial Intelligence 26, nr 1 (20.09.2021): 1713–19. http://dx.doi.org/10.1609/aaai.v26i1.8351.
Pełny tekst źródłaWang, Xiuying, Bo Xu, Changliang Li i Wendong Ge. "Labeling Sequential Data Based on Word Representations and Conditional Random Fields". International Journal of Machine Learning and Computing 5, nr 6 (grudzień 2015): 439–44. http://dx.doi.org/10.18178/ijmlc.2015.5.6.548.
Pełny tekst źródłaKang, Qiyu, i Wee Peng Tay. "Sequential Multi-Class Labeling in Crowdsourcing". IEEE Transactions on Knowledge and Data Engineering 31, nr 11 (1.11.2019): 2190–99. http://dx.doi.org/10.1109/tkde.2018.2874003.
Pełny tekst źródłaCserép, Gergely B., András Herner, Otto S. Wolfbeis i Péter Kele. "Tyrosine specific sequential labeling of proteins". Bioorganic & Medicinal Chemistry Letters 23, nr 21 (listopad 2013): 5776–78. http://dx.doi.org/10.1016/j.bmcl.2013.09.002.
Pełny tekst źródłaA. Manonmani i R. Savithiri. "Double quadrilateral snakes on k-odd sequential harmonious labeling of graphs". Malaya Journal of Matematik 3, nr 04 (1.10.2015): 607–11. http://dx.doi.org/10.26637/mjm304/019.
Pełny tekst źródłaSeoud, M. A., M. El-Zekey i E. F. El-Gazar. "Mean, Odd Sequential and Triangular Sum Graphs". Circulation in Computer Science 2, nr 4 (20.05.2017): 40–52. http://dx.doi.org/10.22632/ccs-2017-252-08.
Pełny tekst źródłaQin, Jie, Li Liu, Zhaoxiang Zhang, Yunhong Wang i Ling Shao. "Compressive Sequential Learning for Action Similarity Labeling". IEEE Transactions on Image Processing 25, nr 2 (luty 2016): 756–69. http://dx.doi.org/10.1109/tip.2015.2508600.
Pełny tekst źródłaMaoying Qiao, Wei Bian, Richard Yi Da Xu i Dacheng Tao. "Diversified Hidden Markov Models for Sequential Labeling". IEEE Transactions on Knowledge and Data Engineering 27, nr 11 (1.11.2015): 2947–60. http://dx.doi.org/10.1109/tkde.2015.2433262.
Pełny tekst źródłaRozprawy doktorskie na temat "Sequential labeling"
Tener, Greg. "ATTACKS ON DIFFICULT INSTANCES OF GRAPH ISOMORPHISM: SEQUENTIAL AND PARALLEL ALGORITHMS". Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2631.
Pełny tekst źródłaPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Science PhD
Carr, Michael John. "Estimating parameters of a stochastic cell invasion model with Fluorescent cell cycle labelling using approximate Bayesian computation". Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/226946/1/Michael_Carr_Thesis.pdf.
Pełny tekst źródłaCheung, Anthony Hing-lam. "Design and implementation of an Arabic optical character recognition system". Thesis, Queensland University of Technology, 1998. https://eprints.qut.edu.au/36073/1/36073_Cheung_1998.pdf.
Pełny tekst źródłaHuang, Chih Kai, i 黃致凱. "Named Entity Recognition in Difangzhi Using Sequential Labeling Techniques". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/k77974.
Pełny tekst źródła國立政治大學
資訊科學學系
104
Difangzhi is the local gazetteers compiled by local government of China. Its content is plenty and extensive. It’s including many undetected information, like biographical information, geographical information, and officer record information and so on. Because of the difference between Difangzhi corpus and modern Chinese language, we should not use current natural language processing tools directly. In order to extract biographical information, we construct our model to recognize the named entity and use the noun list to assist our annotation method in Difangzhi corpus. In this study, we use supervised learning to construct our model. At first, we need to generate our training data. According to the personal information list with manual verification and noun lists, we have reliable information to annotate words in Difangzhi corpus. However, they still have some noise in those lists. As a result, we must do the preprocessing to those lists for cleaning. After, the ambiguity problem will happen when we trying to annotate our corpus. Here we provide three methods to annotate our corpus with disambiguation. Using the annotated corpus to generate training data and built the condition random fields models. In our experiment, we use our models generated by three different annotate methods to predict the character label in testing Difangzhi corpus. According to the labeled result, we extract the person name and address name to evaluate. The result shows the precision of person name recognition is over 80%, and precision of address name recognition is about 86%. Because of the training corpus and test corpus is quite similar, the performances of our model is pretty well. Therefore, we use labeled result to find correlation of person name and address name. Using a simple way to connect person name and address name and sampling the result to evaluate. The sample result shows we could connect person name and address name correctly in some specific grammars. In order to analyze more deeply, we attempt to split clauses in Difangzhi corpus. Use finite state machine model to recognize the beginning of clauses. Although the result shows we could find some beginning of clauses, but our method still lose many beginning of clauses. In the future work, we attempt to add more information to annotate Difangzhi corpus and modify our disambiguated methods to make the recognition result better. In order to get more information about the person in the corpus, we will try to split paragraphs or sentences more precisely. Besides, we also try to analyze grammar in the corpus. Finding useful pattern to connect person name and other entities, like address name, officer name and so on. Generating the information about people appears in the corpus automatically.
SECCI, ERICA. "New strategy of protein expression in mammalian cells for in-cell NMR". Doctoral thesis, 2015. http://hdl.handle.net/2158/1015496.
Pełny tekst źródłaKsiążki na temat "Sequential labeling"
Donkin, Chris, Babette Rae, Andrew Heathcote i Scott D. Brown. Why Is Accurately Labeling Simple Magnitudes So Hard? A Past, Present, and Future Look at Simple Perceptual Judgment. Redaktorzy Jerome R. Busemeyer, Zheng Wang, James T. Townsend i Ami Eidels. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199957996.013.6.
Pełny tekst źródłaCzęści książek na temat "Sequential labeling"
Zhao, Zhongtang, Li Liu, Lingling Li i Qian Ma. "SLOSELM: Self Labeling Online Sequential Extreme Learning Machine". W Internet and Distributed Computing Systems, 179–89. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45940-0_16.
Pełny tekst źródłaChen, Gang, Ran Xu i Sargur N. Srihari. "Sequential Labeling with Online Deep Learning: Exploring Model Initialization". W Machine Learning and Knowledge Discovery in Databases, 772–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46227-1_48.
Pełny tekst źródłaZhang, Guopeng, i Massimo Piccardi. "Sequential Labeling with Structural SVM Under an Average Precision Loss". W Lecture Notes in Computer Science, 344–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49055-7_31.
Pełny tekst źródłaWu, Yu-Chieh, Yue-Shi Lee, Jie-Chi Yang i Show-Jane Yen. "An Integrated Deterministic and Nondeterministic Inference Algorithm for Sequential Labeling". W Information Retrieval Technology, 221–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17187-1_21.
Pełny tekst źródłaZhou, Guodong, Lingpeng Yang, Jian Su i Donghong Ji. "Mutual Information Independence Model Using Kernel Density Estimation for Segmenting and Labeling Sequential Data". W Computational Linguistics and Intelligent Text Processing, 155–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30586-6_15.
Pełny tekst źródłaVan Bockstaele, Elisabeth J., Janet L. Kravets, Xin-Mei Wen i Beverly A. S. Reyes. "Using Sequential Dual-Immunogold-Silver Labeling and Electron Microscopy to Determine the Fate of Internalized G-Protein-Coupled Receptors Following Agonist Treatment". W Neuromethods, 139–66. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/7657_2015_77.
Pełny tekst źródłaParameswari, R. "Total Magic Cordial and Total Sequential Cordial Labeling of Path Related Graph". W Innovations in Science and Technology Vol. 5, 58–68. Book Publisher International (a part of SCIENCEDOMAIN International), 2022. http://dx.doi.org/10.9734/bpi/ist/v5/1862a.
Pełny tekst źródłaLin, Yunan, Yanqing Chen, Wei Fang i Yongsheng Cao. "Design of Automated Warehouse Storage Scheme in Crop Genebank". W Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde221194.
Pełny tekst źródłaBensimon, David, Vincent Croquette, Jean-François Allemand, Xavier Michalet i Terence Strick. "DNA and RNA Polymerases". W Single-Molecule Studies of Nucleic Acids and Their Proteins, 121–54. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198530923.003.0007.
Pełny tekst źródłaGao, Qilu, Gengbiao Zhang, Hongkun Liu, Hongyi Zheng, Li Zhang, Jinghua Wu i Wenbin Zheng. "Meridian Sinew Therapy for Cerebral Blood Flow and Brain Function in Sub-Healthy Individuals: A Study of ASL and rsfMRI". W Computer Methods in Medicine and Health Care. IOS Press, 2022. http://dx.doi.org/10.3233/atde220538.
Pełny tekst źródłaStreszczenia konferencji na temat "Sequential labeling"
Wang, Yiran, Hiroyuki Shindo, Yuji Matsumoto i Taro Watanabe. "Structured Refinement for Sequential Labeling". W Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.findings-acl.164.
Pełny tekst źródłaSun, Xu, i Jun'ichi Tsujii. "Sequential labeling with latent variables". W the 12th Conference of the European Chapter of the Association for Computational Linguistics. Morristown, NJ, USA: Association for Computational Linguistics, 2009. http://dx.doi.org/10.3115/1609067.1609153.
Pełny tekst źródłaKang, Qiyu, i Wee Peng Tay. "Sequential multi-class labeling in crowdsourcing". W WI '17: International Conference on Web Intelligence 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3106426.3106446.
Pełny tekst źródłaMàrquez, Lluís, Pere Comas, Jesús Giménez i Neus Català. "Semantic role labeling as sequential tagging". W the Ninth Conference. Morristown, NJ, USA: Association for Computational Linguistics, 2005. http://dx.doi.org/10.3115/1706543.1706579.
Pełny tekst źródłaChen, Sheng, Alan Fern i Sinisa Todorovic. "Multi-object Tracking via Constrained Sequential Labeling". W 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2014. http://dx.doi.org/10.1109/cvpr.2014.148.
Pełny tekst źródłaQiao, Maoying, Wei Bian, Richard Yi Da Xu i Dacheng Tao. "Diversified hidden Markov models for sequential labeling". W 2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, 2016. http://dx.doi.org/10.1109/icde.2016.7498400.
Pełny tekst źródłaKim, Seokhwan, i Rafael E. Banchs. "Sequential Labeling for Tracking Dynamic Dialog States". W Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL). Stroudsburg, PA, USA: Association for Computational Linguistics, 2014. http://dx.doi.org/10.3115/v1/w14-4345.
Pełny tekst źródłaOno, Satoshi, Haruki Matsuyama, Ken-ichi Fukui i Shigeki Hosoda. "Error detection of oceanic observation data using sequential labeling". W 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2015. http://dx.doi.org/10.1109/dsaa.2015.7344896.
Pełny tekst źródłaZhang, Guopeng, i Massimo Piccardi. "Sequential labeling with structural SVM under the F1 loss". W 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7026067.
Pełny tekst źródłaLin, Lu, Zheng Luo, Dezhi Hong i Hongning Wang. "Sequential Learning with Active Partial Labeling for Building Metadata". W BuildSys '19: The 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3360322.3360866.
Pełny tekst źródła