Rozprawy doktorskie na temat „Sequence alignment”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Sequence alignment”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Starrett, Dean. "Optimal Alignment of Multiple Sequence Alignments". Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/194840.
Pełny tekst źródłaChia, Nicholas Lee-Ping. "Sequence alignment". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1154616122.
Pełny tekst źródłaAl, Ghamdi Manal. "Video sequence alignment". Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/9056/.
Pełny tekst źródłaSammeth, Michael. "Integrated multiple sequence alignment". [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=98148767X.
Pełny tekst źródłaPowell, David Richard 1973. "Algorithms for sequence alignment". Monash University, School of Computer Science and Software Engineering, 2001. http://arrow.monash.edu.au/hdl/1959.1/8051.
Pełny tekst źródłaBirney, Ewan. "Sequence alignment in bioinformatics". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621653.
Pełny tekst źródłaFleissner, Roland. "Sequence alignment and phylogenetic inference". Berlin : Logos Verlag, 2004. http://diss.ub.uni-duesseldorf.de/ebib/diss/file?dissid=769.
Pełny tekst źródłaFleissner, Roland. "Sequence alignment and phylogenetic inference". [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=971844704.
Pełny tekst źródłaAuer, Jens. "Metaheuristic Multiple Sequence Alignment Optimisation". Thesis, University of Skövde, School of Humanities and Informatics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-899.
Pełny tekst źródłaThe ability to tackle NP-hard problems has been greatly extended by the introduction of Metaheuristics (see Blum & Roli (2003)) for a summary of most Metaheuristics, general problem-independent optimisation algorithms extending the hill-climbing local search approach to escape local minima. One of these algorithms is Iterated Local Search (ILS) (Lourenco et al., 2002; Stützle, 1999a, p. 25ff), a recent easy to implement but powerful algorithm with results comparable or superior to other state-of-the-art methods for many combinatorial optimisation problems, among them the Traveling Salesman (TSP) and Quadratic Assignment Problem (QAP). ILS iteratively samples local minima by modifying the current local minimum and restarting
a local search porcedure on this modified solution. This thesis will show how ILS can be implemented for MSA. After that, ILS will be evaluated and compared to other MSA algorithms by BAliBASE (Thomson et al., 1999), a set of manually refined alignments used in most recent publications of algorithms and in at least two MSA algorithm surveys. The runtime-behaviour will be evaluated using runtime-distributions.
The quality of alignments produced by ILS is at least as good as the best algorithms available and significantly superiour to previously published Metaheuristics for MSA, Tabu Search and Genetic Algorithm (SAGA). On the average, ILS performed best in five out of eight test cases, second for one test set and third for the remaining two. A drawback of all iterative methods for MSA is the long runtime needed to produce good alignments. ILS needs considerably less runtime than Tabu Search and SAGA, but can not compete with progressive or consistency based methods, e. g. ClustalW or T-COFFEE.
Arvestad, Lars. "Algorithms for biological sequence alignment". Doctoral thesis, KTH, Numerisk analys och datalogi, NADA, 1999. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2905.
Pełny tekst źródłaHo, Ngai-lam, i 何毅林. "Algorithms on constrained sequence alignment". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30201949.
Pełny tekst źródłaCarroll, Hyrum D. "Biologically Relevant Multiple Sequence Alignment". Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2623.pdf.
Pełny tekst źródłaGrossmann, Steffen. "Statistics of optimal sequence alignments". [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=968907466.
Pełny tekst źródłaAlimehr, Leila. "The Performance of Sequence Alignment Algorithms". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-200289.
Pełny tekst źródłaDeBlasio, Daniel Frank. "Parameter Advising for Multiple Sequence Alignment". Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/612932.
Pełny tekst źródłaGuasco, Luciano M. "Multiple sequence alignment correction using constraints". Master's thesis, Faculdade de Ciências e Tecnologia, 2010. http://hdl.handle.net/10362/5143.
Pełny tekst źródłaOne of the most important fields in bioinformatics has been the study of protein sequence alignments. The study of homologous proteins, related by evolution, shows the conservation of many amino acids because of their functional and structural importance. One particular relationship between the amino acid sites in the same sequence or between different sequences, is protein-coevolution, interest in which has increased as a consequence of mathematical and computational methods used to understand the spatial, functional and evolutionary dependencies between amino acid sites. The principle of coevolution means that some amino acids are related through evolution because mutations in one site can create evolutionary pressures to select compensatory mutations in other sites that are functionally or structurally related. With the actual methods to detect coevolution, specifically mutual information techniques from the information theory field, we show in this work that much of the information between coevolved sites is lost because of mistakes in the multiple sequence alignment of variable regions. Moreover, we show that using these statistical methods to detect coevolved sites in multiple sequence alignments results in a high rate of false positives. Due to the amount of errors in the detection of coevolved site from multiple sequence alignments, we propose in this work a method to improve the detection efficacy of coevolved sites and we implement an algorithm to fix such sites correcting the misalignment produced in those specific locations. The detection part of our work is based on the mutual information between sites that are guessed as having coevolved, due to their high statistical correlation score. With this information we search for possible misalignments on those regions due to the incorrect matching of amino acids during the alignment. The re-alignment part is based on constraint programming techniques, to avoid the combinatorial complexity when one amino acid can be aligned with many others and to avoid inconsistencies in the alignments. In this work, we present a framework to impose constraints over the sequences, and we show how it is possible to compute alignments based on different criteria just by setting constraint between the amino acids. This framework can be applied not only for improving the alignment and detection of coevolved regions, but also to any desired constraints that may be used to express functional or structural relations among the amino acids in multiple sequences. We show also that after we fix these misalignments, using constraints based techniques, the correlation between coevolved sites increases and, in general, the new alignment is closer to the correct alignment than the MSA alignment. Finally, we show possible future research lines with the objective of overcoming some drawbacks detected during this work.
Zhao, Kaiyong. "GPU accelerated sequence alignment /Zhao Kaiyong". HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/378.
Pełny tekst źródłaLöytynoja, Ari. "Molecular sequence alignment and character homology". Doctoral thesis, Universite Libre de Bruxelles, 2003. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211261.
Pełny tekst źródłaZola, Jaroslaw. "Parallel server for multiple sequence alignment". Grenoble INPG, 2005. http://www.theses.fr/2005INPG0187.
Pełny tekst źródłaLn this work we investigate application of parallel processing and web-caching as a method to improve the efficiency of multiple sequence alignment. We develop a generic framework for distributed and local cache implementation, and we design decentralised caching system storing intermediate results of sequence alignment. Finally, we create a parallel server for multiple sequence alignment which utilises above techniques to speedup processing of large sequence sets. The server is based on the PhylTree method which is a generic scheme for multiple sequence alignment with simultaneous phylogeny, developed in the Laboratory ID-IMAG. Ln our work we propose also sorne extensions of PhylTree, like for example the application of simulated annealing to improve the efficiency of phylogenetic analysis
Gîrdea, Marta. "New methods for biological sequence alignment". Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10089/document.
Pełny tekst źródłaBiological sequence alignment is a fundamental technique in bioinformatics, and consists of identifying series of similar (conserved) characters that appear in the same order in both sequences, and eventually deducing a set of modifications (substitutions, insertions and deletions) involved in the transformation of one sequence into the other. This technique allows one to infer, based on sequence similarity, if two or more biological sequences are potentially homologous, i.e. if they share a common ancestor, thus enabling the understanding of sequence evolution.This thesis addresses sequence comparison problems in two different contexts: homology detection and high throughput DNA sequencing. The goal of this work is to develop sensitive alignment methods that provide solutions to the following two problems: i) the detection of hidden protein homologies by protein sequence comparison, when the source of the divergence are frameshift mutations, and ii) mapping short SOLiD reads (sequences of overlapping di-nucleotides encoded as colors) to a reference genome. In both cases, the same general idea is applied: to implicitly compare DNA sequences for detecting changes occurring at this level, while manipulating, in practice, other representations (protein sequences, sequences of di-nucleotide codes) that provide additional information and thus help to improve the similarity search. The aim is to design and implement exact and heuristic alignment methods, along with scoring schemes, adapted to these scenarios
Jiang, Tianwei. "Sequence alignment : algorithm development and applications /". View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?ECED%202009%20JIANG.
Pełny tekst źródłaIsa, Mohammad Nazrin. "High performance reconfigurable architectures for biological sequence alignment". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7721.
Pełny tekst źródłaNguyen, Ken D. "Multiple Biolgical Sequence Alignment: Scoring Functions, Algorithms, and Evaluations". Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/cs_diss/62.
Pełny tekst źródłaGarriga, Nogales Edgar 1990. "New algorithmic contributions for large scale multiple sequence alignments of protein sequences". Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2022. http://hdl.handle.net/10803/673526.
Pełny tekst źródłaEn aquests dies de profunds canvis i una ràpida evolució de la tecnologia, la quantitat de dataque la ciència ha de treballar ha crescut increïblement ràpid i la grandària dels arxius ha crescutde manera quasi prohibitiva.Els alineaments múltiples de seqüència (MSA) es fan servir endiverses àrees de la biologia, i l'increment de les dades ha produït una degradació delsresultats. És per això, que es proposa una nova estratègia per realitzar els alineaments. Aquestnou paradigma permet alinear milions de seqüències i l'opcio de modularitzar el procés.'Regressive' permet la paral·lelització del procés i la combinació de diferents algoritmesd'agrupacio (guide-tree) amb el mètode de alineament que és desitgi. Dins del camp del'agrupació, s'ha de repensar l'estratègia per crear els guide-tree. Un estudi sobre l'estat actualdels mètodes i les seves virtuts i punts febles ha sigut realitzar per llençar una mica de llum enaquesta àrea. Els 'guide-tree' no poden ser el coll de botella, i haurien de servir per començarde la millor manera possible el procés d'alineament.
Lu, Yue. "Improving the quality of multiple sequence alignment". [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3111.
Pełny tekst źródłaOrobitg, Cortada Miquel. "High performance computing on biological sequence alignment". Doctoral thesis, Universitat de Lleida, 2013. http://hdl.handle.net/10803/110930.
Pełny tekst źródłaYang, Qian 1973. "RNA sequence alignment and secondary structure prediction". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82453.
Pełny tekst źródłaHolmes, I. "Studies in probabilistic sequence alignment and evolution". Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604192.
Pełny tekst źródłaBulancea, Lindvall Oscar. "Quantum Methods for Sequence Alignment and Metagenomics". Thesis, KTH, Tillämpad fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-256349.
Pełny tekst źródłaBüschking, Christian. "Incorporation of structural information in RNA sequence alignment". [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=969343140.
Pełny tekst źródłaRausch, Tobias [Verfasser]. "Dissecting multiple sequence alignment methods : the analysis, design and development of generic multiple sequence alignment components in SeqAn / Tobias Rausch". Berlin : Freie Universität Berlin, 2010. http://d-nb.info/1024541460/34.
Pełny tekst źródłaMarco-Sola, Santiago. "Efficient approximate string matching techniques for sequence alignment". Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/460835.
Pełny tekst źródłaUno de los avances más importantes de los últimos años en el campo de la biotecnología ha sido el desarrollo de las llamadas técnicas de secuenciación de alto rendimiento (high-throughput sequencing, HTS). Debido a las limitaciones técnicas para secuenciar un genoma, las técnicas de alto rendimiento secuencian individualmente billones de pequeñas partes del genoma provenientes de regiones aleatorias. Posteriormente, estas pequeñas secuencias han de ser localizadas en el genoma de referencia del organismo en cuestión. Este proceso se denomina alineamiento - o mapeado - y consiste en identificar aquellas regiones del genoma de referencia que comparten una alta similaridad con las lecturas producidas por el secuenciador. De esta manera, en cuestión de horas, la secuenciación de alto rendimiento puede secuenciar un individuo y establecer las diferencias de este con el resto de la especie. En última instancia, estas tecnologías han potenciado nuevos protocolos y metodologías de investigación con un profundo impacto en el campo de la genómica, la medicina y la biología en general. La secuenciación alto rendimiento, sin embargo, supone un reto para los procesos tradicionales de análisis de datos. Debido a la elevada cantidad de datos a analizar, se necesitan nuevas y mejoradas técnicas algorítmicas que puedan escalar con el volumen de datos y producir resultados precisos. Esta tesis aborda dicho problema. Las contribuciones que en ella se realizan se enfocan desde una perspectiva metodológica y otra algorítmica que propone el desarrollo de nuevos algoritmos y técnicas que permitan alinear secuencias de manera eficiente, precisa y escalable. Desde el punto de vista metodológico, esta tesis analiza y propone un marco de referencia para evaluar la calidad de los resultados del alineamiento de secuencias. Para ello, se analiza el origen de los conflictos durante la alineación de secuencias y se exploran los límites alcanzables en calidad con las tecnologías de secuenciación de alto rendimiento. Desde el punto de vista algorítmico, en el contexto de la búsqueda aproximada de patrones, esta tesis propone nuevas técnicas algorítmicas y de diseño de índices con el objetivo de mejorar la calidad y el desempeño de las herramientas dedicadas a alinear secuencias. En concreto, esta tesis presenta técnicas de diseño de índices genómicos enfocados a obtener un acceso más eficiente y escalable. También se presentan nuevas técnicas algorítmicas de filtrado con el fin de reducir el tiempo de ejecución necesario para alinear secuencias. Y, por último, se proponen algoritmos incrementales y técnicas híbridas para combinar métodos de alineamiento y mejorar el rendimiento en búsquedas donde el error esperado es alto. Todo ello sin degradar la calidad de los resultados y con garantías formales de precisión. Para concluir, es preciso apuntar que todos los algoritmos y metodologías propuestos en esta tesis están implementados y forman parte del alineador GEM. Este versátil alineador ofrece resultados de alta calidad en entornos de producción siendo varias veces más rápido que otros alineadores. En la actualidad este software se ofrece gratuitamente, tiene una amplia comunidad de usuarios y ha sido citado en numerosas publicaciones científicas.
Lightner, Carin Ann. "A Tabu Search Approach to Multiple Sequence Alignment". NCSU, 2008. http://www.lib.ncsu.edu/theses/available/etd-05312008-191232/.
Pełny tekst źródłaTalbot, Danielle. "Identifying misalignments in sequence alignment for protein modelling". Thesis, University of Reading, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445754.
Pełny tekst źródłaZhang, Xiaodong. "A Local Improvement Algorithm for Multiple Sequence Alignment". Ohio University / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1049485762.
Pełny tekst źródłaKim, Eagu. "Inverse Parametric Alignment for Accurate Biological Sequence Comparison". Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/193664.
Pełny tekst źródłaArner, Erik. "Solving repeat problems in shotgun sequencing /". Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-996-3/.
Pełny tekst źródłaBlassel, Luc. "From sequences to knowledge, improving and learning from sequence alignments". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS385.
Pełny tekst źródłaIn this thesis we study two important problems in computational biology, one pertaining to primary analysis of sequencing data, and the second pertaining to secondary analysis of sequences to obtain biological insights using machine-learning. Sequence alignment is one of the most powerful and important tools in the field of computational biology. Read alignment is often the first step in many analyses like structural variant detection, genome assembly or variant calling. Long read sequencing technologies have improved the quality of results across all these analyses. They remain, however, plagued by sequencing errors and pose algorithmic challenges to alignment. A prevalent technique to reduce the detrimental effects of these errors is homopolymer compression, which targets the most prevalent type of long-read sequencing error. We present a more general framework than homopolymer compression, which we call mapping-friendly sequence reductions (MSR). We then show that some of these MSRs improve the accuracy of read alignments across whole human, drosophila and E. coli genomes. Improvements in sequence alignment methods are crucial for downstream analyses. For instance, multiple sequence alignments are indispensable when studying resistance in viruses. With the ever growing quantity of annotated, high quality multiple sequence alignments it has become possible and useful to study resistance in viruses with machine learning methods. We used a very large multiple sequence alignment of British HIV sequences and trained multiple classifiers to discriminate between treatment-naive and treatment-experienced sequences. By studying important classifier features we identified drug resistance mutations. We then removed known drug resistance associated signal from the data before training, kept classifying power, and identified 6 novel resistance associated mutations. Further study indicated that these were most likely accessory in nature and linked to known resistance mutations
Li, Yuheng. "Searching for remotely homologous sequences in protein databases with hybrid PSI-blast". The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1164741421.
Pełny tekst źródłaYe, Yongtao, i 叶永滔. "Aligning multiple sequences adaptively". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206465.
Pełny tekst źródłapublished_or_final_version
Computer Science
Master
Master of Philosophy
Nakato, Ryuichiro. "Development of Fast and Accurate Genomic Sequence Alignment Methods". 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/123352.
Pełny tekst źródłaZhang, Ching. "Genetic algorithm approaches for efficient multiple molecular sequence alignment". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0013/NQ30660.pdf.
Pełny tekst źródłaZhou, Rong. "Memory-efficient graph search applied to multiple sequence alignment". Diss., Mississippi State : Mississippi State University, 2005. http://library.msstate.edu/etd/show.asp?etd=etd-06282005-015428.
Pełny tekst źródłaHerman, Joseph L. "Multiple sequence analysis in the presence of alignment uncertainty". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:88a56d9f-a96e-48e3-b8dc-a73f3efc8472.
Pełny tekst źródłaMcMahon, Peter Leonard. "Accelerating genomic sequence alignment using high performance reconfigurable computers". Master's thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/17377.
Pełny tekst źródłaReconfigurable computing technology has progressed to a stage where it is now possible to achieve orders of magnitude performance and power efficiency gains over conventional computer architectures for a subset of high performance computing applications. In this thesis, we investigate the potential of reconfigurable computers to accelerate genomic sequence alignment specifically for genome sequencing applications. We present a highly optimized implementation of a parallel sequence alignment algorithm for the Berkeley Emulation Engine (BEE2) reconfigurable computer, allowing a single BEE2 to align simultaneously hundreds of sequences. For each reconfigurable processor (FPGA), we demonstrate a 61X speedup versus a state-of-the-art implementation on a modern conventional CPU core, and a 56X improvement in performance-per-Watt. We also show that our implementation is highly scalable and we provide performance results from a cluster implementation using 32 FPGAs. We conclude that reconfigurable computers provide an excellent platform on which to run sequence alignment, and that clusters of reconfigurable computers will be able to cope far more easily with the vast quantities of data produced by new ultra-high-throughput sequencers.
Jiang, Yanan master of cellular and molecular biology. "Manual alignment of IVS sequences and its implication in multiple sequence alignment". Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-12-4706.
Pełny tekst źródłatext
Ying, Chung Li, i 鍾立穎. "Multiple Sequence Alignment using Pairwise Suboptimal Alignment". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/78872248303598965142.
Pełny tekst źródła國立臺灣科技大學
資訊工程系
94
Multiple sequence alignment is an important tool to analysis biological sequence from searching similar sequence in database to protein structure. The optimal solution of dynamic programming is not always real biological solution when the number of sequence is increasing. Another method is progressive algorithm, it combined most similar sequence and then added next similar sequence. But the order of combining sequence have different alignment. Due to the optimal alignment is not always the best alignment in biological alignment, combining the pairwise suboptimal alignment have the possibility to find a better solution. The method also can decrease the time complexity. On the other hand, there is a possibility to find better alignment when we take a few time to try all combination.
Wang, Shu 1973. "On multiple sequence alignment". Thesis, 2007. http://hdl.handle.net/2152/3715.
Pełny tekst źródłaTsai, Ping Han, i 蔡秉翰. "Sequence Alignment with Block Constraint". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/82895843637763555950.
Pełny tekst źródła國立清華大學
資訊系統與應用研究所
104
In order to determine whether two sequences are similar or not, we usually do the pairwise alignment. In bioinformatics, sequence alignment is an important strategy to determine the identity between two DNA, RNA, or protein sequences. The sequence alignment can identify the similar regions that may share similar structure, function or evolutionary relationship. Compared with the 20-letter protein alphabet, the 4-letter RNA alphabet is smaller and less informative. As a consequence, when the identity between two RNA sequences is under 60%, it is hard to determine whether these two RNA sequences have the similar struc-ture. Thus, to align two RNA molecules, several studies have considered not merely sequence information, but also secondary or tertiary structure infor-mation. Our lab developed a tool called iPARTS2 in 2016 that aligns two RNA 3D structures based on both primary and tertiary structure information. The basic steps of our iPARTS2 are as follows. First, a Ramachandran-like diagram of RNAs was derived by plotting nucleotides of RNA structures in the PDB da-tabase on a 2D axis using their two pseudo-torsion angles η and θ. Then, affinity propagation clustering algorithm was applied to the η-θ plot to obtain 23 nucle-otide conformations, which were combined with RNA 1D sequence information A, U, C and G to further obtain a structural alphabet (SA) of 92 elements. Next, the SA was used to transform RNA 3D structures into 1D sequences of SA let-ters. Finally, classical sequence alignment methods were utilized on two SA-encoded sequences to determine their structural similarities. However, given two RNA molecules
Xiao, Bo Weng, i èåæ. "Block Alignment: An Approach for Multiple Sequence Alignment Containing Clusters". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/19616460760964410139.
Pełny tekst źródła國立暨南國際大學
資訊工程學系
92
Multiple sequence alignment is a fundamental problem in computational molecular biology. It has been known as an NP-hard problem. To find its optimal solution will take a lot of time. For a reasonable wait and an acceptable solution, we have progressive methods. These methods perform pairwise alignment, and then combine them in to a multiple sequence alignment. In this thesis, we focus on multiple sequence alignment containing clusters. We try to take another view point to deal with sequence alignment. We use a matrix to present a sequence. Every sequence will be represented as a matrix. After two sequences (matrices) are aligned, the result of the alignment will again be represented by a matrix and then the original two sequences (matrices) will be discarded. That is, the result of aligning a set of sequences will always be considered as a block and represented by a matrix. This is thus different from the old ways in which only two sequences are aligned, not a group of aligned sequences and another group of aligned sequences. In this thesis, we will show some experimental results to test our proposed method. Block alignment outperforms those progressive methods for sequences containing clusters.