Gotowa bibliografia na temat „Semoconductor Nanomaterials - Electrical Properties”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Semoconductor Nanomaterials - Electrical Properties”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Semoconductor Nanomaterials - Electrical Properties"
Lapekin, Nikita I., Artem A. Shestakov, Andrey E. Brester, Arina V. Ukhina i Alexander G. Bannov. "Electrical properties of compacted carbon nanomaterials". MATEC Web of Conferences 340 (2021): 01047. http://dx.doi.org/10.1051/matecconf/202134001047.
Pełny tekst źródłaWang Xinda, 王欣达, 廖嘉宁 Liao Jianing, 姚煜 Yao Yu, 郭伟 Guo Wei, 康慧 Kang Hui i 彭鹏 Peng Peng. "Nanojoining and Electrical Properties of Silver Nanomaterials". Chinese Journal of Lasers 48, nr 8 (2021): 0802016. http://dx.doi.org/10.3788/cjl202148.0802016.
Pełny tekst źródłaKang, Xueya, Tu Minjing, Ming Zhang i Wang Tiandiao. "Microstructure and Electrical Properties of Doped ZnO Varistor Nanomaterials". Solid State Phenomena 99-100 (lipiec 2004): 127–32. http://dx.doi.org/10.4028/www.scientific.net/ssp.99-100.127.
Pełny tekst źródłaSharma, A. Deepak, i H. Basantakumar Sharma. "Electrical and Magnetic Properties of Mn-Doped BiFeO3 Nanomaterials". Integrated Ferroelectrics 203, nr 1 (22.11.2019): 81–90. http://dx.doi.org/10.1080/10584587.2019.1674969.
Pełny tekst źródłaWang, Jingang, Xijiao Mu i Mengtao Sun. "The Thermal, Electrical and Thermoelectric Properties of Graphene Nanomaterials". Nanomaterials 9, nr 2 (6.02.2019): 218. http://dx.doi.org/10.3390/nano9020218.
Pełny tekst źródłaTran Ngoc Lan, Nguyen Tran Thuat, Hoang Ngoc Lam Huong i Nguyen Van Quynh. "Effects of silver incorporation on electrical and optical properties of CuAlxOy thin films". Journal of Military Science and Technology, FEE (23.12.2022): 294–302. http://dx.doi.org/10.54939/1859-1043.j.mst.fee.2022.294-302.
Pełny tekst źródłaDobrovolskaia, Marina A., i Scott E. McNeil. "Immunological properties of engineered nanomaterials". Nature Nanotechnology 2, nr 8 (29.07.2007): 469–78. http://dx.doi.org/10.1038/nnano.2007.223.
Pełny tekst źródłaYoo, Doo-Yeol, Ilhwan You, Hyunchul Youn i Seung-Jung Lee. "Electrical and piezoresistive properties of cement composites with carbon nanomaterials". Journal of Composite Materials 52, nr 24 (21.03.2018): 3325–40. http://dx.doi.org/10.1177/0021998318764809.
Pełny tekst źródłaPietrzak, T. K., M. Maciaszek, J. L. Nowiński, W. Ślubowska, S. Ferrari, P. Mustarelli, M. Wasiucionek, M. Wzorek i J. E. Garbarczyk. "Electrical properties of V2O5 nanomaterials prepared by twin rollers technique". Solid State Ionics 225 (październik 2012): 658–62. http://dx.doi.org/10.1016/j.ssi.2011.11.017.
Pełny tekst źródłaPietrzak, T. K., L. Wewior, J. E. Garbarczyk, M. Wasiucionek, I. Gorzkowska, J. L. Nowinski i S. Gierlotka. "Electrical properties and thermal stability of FePO4 glasses and nanomaterials". Solid State Ionics 188, nr 1 (kwiecień 2011): 99–103. http://dx.doi.org/10.1016/j.ssi.2010.11.006.
Pełny tekst źródłaRozprawy doktorskie na temat "Semoconductor Nanomaterials - Electrical Properties"
Wang, Lingyan. "Design and fabrication of functional nanomaterials with tunable electrical, optical, and magnetic properties". Diss., Online access via UMI:, 2007.
Znajdź pełny tekst źródłaZhou, Junchao. "LIGHT EXTRACTION EFFICIENCY IN III-NITRIDE LIGHT-EMITTING DIODES AND PIEZOELECTRIC PROPERTIES IN ZNO NANOMATERIALS". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1465399583.
Pełny tekst źródłaRupasinghe, R.-A. Thilini Perera. "Probing electrical and mechanical properties of nanoscale materials using atomic force microscopy". Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/2268.
Pełny tekst źródłaWeaver, Abigail. "Mechanical and electrical properties of 3D-printed acrylonitrile butadiene styrene composites reinforced with carbon nanomaterials". Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35413.
Pełny tekst źródłaDepartment of Mechanical and Nuclear Engineering
Gurpreet Singh
3D-printing is a popular manufacturing technique for making complex parts or small quantity batches. Currently, the applications of 3D-printing are limited by the material properties of the printed material. The processing parameters of commonly available 3D printing processes constrain the materials used to a small set of primarily plastic materials, which have relatively low strength and electrical conductivity. Adding filler materials has the potential to improve these properties and expand the applications of 3D printed material. Carbon nanomaterials show promise as filler materials due to their extremely high conductivity, strength, and surface area. In this work, Graphite, Carbon Nanotubes, and Carbon Black (CB) were mixed with raw Acrylonitrile Butadiene Styrene (ABS) pellets. The resulting mixture was extruded to form a composite filament. Tensile test specimens and electrical conductivity specimens were manufactured by Fused Deposition Method (FDM) 3D-printing using this composite filament as the feedstock material. Weight percentages of filler materials were varied from 0-20 wt% to see the effect of increasing filler loading on the composite materials. Additional tensile test specimens were fabricated and post-processed with heat and microwave irradiation in attempt to improve adhesion between layers of the 3D-printed materials. Electrical Impedance Spectroscopy tests on 15 wt% Multiwalled Carbon Nanotube (MWCNT) composite specimens showed an increase in DC electrical conductivity of over 6 orders of magnitude compared to neat ABS samples. This 15 wt% specimen had DC electrical conductivity of 8.74x10−6 S/cm, indicating semi-conducting behavior. MWCNT specimens with under 5 wt% filler loading and Graphite specimens with under 1 wt% filler loading showed strong insulating behavior similar to neat ABS. Tensile tests showed increases in tensile strength at 5 wt% CB and 0.5 wt% MWCNT. Placing the specimens in the oven at 135 °C for an hour caused increased the stiffness of the composite specimens.
Liang, Qizhen. "Preparation and properties of thermally/electrically conductive material architecture based on graphene and other nanomaterials". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44846.
Pełny tekst źródłaMehdi, Aghaei Sadegh. "Electronic and Magnetic Properties of Two-dimensional Nanomaterials beyond Graphene and Their Gas Sensing Applications: Silicene, Germanene, and Boron Carbide". FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3389.
Pełny tekst źródłaDe, Silva Vashista C. "Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062904/.
Pełny tekst źródłaWei, Pai-Chun, i 魏百駿. "Molecular beam epitaxy grown Indium nitride thin film and nanomaterials: Optical, electrical and thermal properties". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/16537373466211692317.
Pełny tekst źródła國立清華大學
材料科學工程學系
97
In this thesis, we present successful growth and characterization (optical, electrical, and thermal) of InN epitaxial films and nanostructures by molecular beam epitaxy. Temperature-dependent photoluminescence (PL) spectroscopy is used as a tool to study the much controversial optical band gap in degenerate InN. Samples with PL peak on the lower and higher energy side of 0.730 eV demonstrate a normal redshift and anomalous blueshift, respectively, with increasing temperature. This can be explained effectively on the basis of a competition between a conventional red shift from lattice dilation and a blue shift of the electron and hole quasi Fermi-level separation. On the electrical characterization part, we report the first observation of negative photoconductivity behavior in InN thin films. Unlike most conventional (non-degenerate) semiconductors, that show increase in conductivity with illumination, InN shows a regular decrease. The results have been qualitatively modeled on the basis of electronic scattering in the conduction band and transitions in degenerate InN with recombination centers. Finally, a systematic thermal diffusivity (related to thermal conductivity) study in the MBE-grown InN thin films on various substrates with different growth temperatures were carried out. A high thermal diffusivity value of 0.55 cm2/s for a combined 1.7 um thick InN film suggests a lower degree of phonon scattering in our sample with fewer structural defects.
Shekhar, Shashank. "Electrical And Magnetic Properties Of Polyvinylchloride - Amorphous Carbon / Iron Carbide Nanoparticle Comosites". Thesis, 2007. https://etd.iisc.ac.in/handle/2005/500.
Pełny tekst źródłaShekhar, Shashank. "Electrical And Magnetic Properties Of Polyvinylchloride - Amorphous Carbon / Iron Carbide Nanoparticle Comosites". Thesis, 2007. http://hdl.handle.net/2005/500.
Pełny tekst źródłaCzęści książek na temat "Semoconductor Nanomaterials - Electrical Properties"
Al-Douri, Yarub. "Electrical and Optical Properties of Nanomaterials". W Nanomaterials, 75–104. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3881-8_5.
Pełny tekst źródłaGunasekaran, Vijayasri, Mythili Narayanan, Gurusamy Rajagopal i Jegathalaprathaban Rajesh. "Electrical and Dielectric Properties: Nanomaterials". W Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 783–800. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90948-2_25.
Pełny tekst źródłaGunasekaran, Vijayasri, Mythili Narayanan, Gurusamy Rajagopal i Jegathalaprathaban Rajesh. "Electrical and Dielectric Properties: Nanomaterials". W Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 1–18. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-34007-0_25-1.
Pełny tekst źródłaChoi, U. Hyeok, i James Runt. "Mechanical and Electrical Properties of Ion-Containing Polymers". W Encyclopedia of Polymeric Nanomaterials, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36199-9_86-1.
Pełny tekst źródłaChoi, U. Hyeok, i James Runt. "Mechanical and Electrical Properties of Ion-Containing Polymers". W Encyclopedia of Polymeric Nanomaterials, 1197–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_86.
Pełny tekst źródłaSawyer, Shayla, i Dali Shao. "Electrical and Optical Enhancement Properties of Metal/Semimetal Nanostructures for Metal Oxide UV Photodetectors". W Handbook of Nanomaterials Properties, 1177–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-31107-9_49.
Pełny tekst źródłaArulmurugan, B., G. Kausalya Sasikumar i L. Rajeshkumar. "Nanostructured Metals: Optical, Electrical, and Mechanical Properties". W Mechanics of Nanomaterials and Polymer Nanocomposites, 69–85. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2352-6_4.
Pełny tekst źródłaMeng, Qingguo. "Optical, Electrical, and Catalytic Properties of Metal Nanoclusters Investigated by ab initio Molecular Dynamics Simulation: A Mini Review". W Photoinduced Processes at Surfaces and in Nanomaterials, 215–34. Washington, DC: American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1196.ch011.
Pełny tekst źródłaAdimule, Vinayak, P. Vageesha, Gangadhar Bagihalli, Debdas Bowmik i H. J. Adarsha. "Synthesis, Characterization of Hybrid Nanomaterials of Strontium, Yttrium, Copper Doped with Indole Schiff Base Derivatives Possessing Dielectric and Semiconductor Properties". W Lecture Notes in Electrical Engineering, 1131–40. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5802-9_97.
Pełny tekst źródła"Electrical and Transport Properties". W Introduction to Nanomaterials and Devices, 233–97. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118148419.ch5.
Pełny tekst źródłaStreszczenia konferencji na temat "Semoconductor Nanomaterials - Electrical Properties"
Luniov, Sergiy, Olexandr Burban i Yurii Koval. "Electrical Properties of Doped Germanium Nanofilms". W 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2020. http://dx.doi.org/10.1109/nap51477.2020.9309623.
Pełny tekst źródłaSagapariya, Khushal, K. N. Rathod, Keval Gadani, Hetal Boricha, V. G. Shrimali, Bhargav Rajyaguru, Amiras Donga i in. "Investigations on structural, optical and electrical properties of V2O5 nanoparticles". W FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982084.
Pełny tekst źródłaZnamenshchykov, Yaroslav, Kononov Oleksiy, Denys Kurbatov, Anatoliy Opanasyuk i Pashchenko Maksym. "Electrical Properties, Photoresponse, And Structural Properties Of CdZnTeSe Thick Polycrystalline Films". W 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2022. http://dx.doi.org/10.1109/nap55339.2022.9934428.
Pełny tekst źródłaSengunthar, Poornima S., Rutvi J. Pandya i U. S. Joshi. "Structural, electrical and optical properties of Fe doped BaTiO3 perovskite ceramic". W FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982101.
Pełny tekst źródłaKoltunowicz, Tomasz N., Aleksander K. Fedotov, Vitalii Bondariev, Oleksandr Boiko, Igor Troyanchuk i Vera Fedotova. "Electrical properties of Ca3Co4O9 and Ca3Co3.9Fe0.1O9 ceramics". W 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190278.
Pełny tekst źródłaSapana, Solanki, Davit Dhruv, Zalak Joshi, Keval Gadani, K. N. Rathod, Hetal Boricha, V. G. Shrimali i in. "Studies on structural and electrical properties of nanostructured RMnO3 (R = Gd & Ho)". W FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982113.
Pełny tekst źródłaMalucci, Robert, i Bretton Rickett. "Applications and Properties of Nanomaterials in Electrical Contacts; Holm Conference Panel Discussion". W Electrical Contacts - 2006. 52nd IEEE Holm Conference on Electrical Contacts. IEEE, 2006. http://dx.doi.org/10.1109/holm.2006.284095.
Pełny tekst źródłaLobko, Eu, V. Demchenko, V. Klepko, Y. Yakovlev i E. Lysenkov. "The effect of the electrical field on the electrical and mechanical properties of polyurethane/carbon nanotubes composites". W 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190277.
Pełny tekst źródłaKoziarskyi, Ivan, Dmytro Koziarskyi, Taras Kovaliuk i Eduard Maistruk. "Electrical Properties of p-Cu2O/CdS/n-Si Heterojunction". W 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2021. http://dx.doi.org/10.1109/nap51885.2021.9568539.
Pełny tekst źródłaUpadhyay, R. B., K. Jalaja i U. S. Joshi. "Structural and electrical properties of Ba0.6 Sr0.4 TiO3 thin film on LNO/Pt bottom electrode". W FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982079.
Pełny tekst źródła