Spis treści
Gotowa bibliografia na temat „Semistable points”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Semistable points”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Semistable points"
Luks, Tomasz, i Yimin Xiao. "Multiple Points of Operator Semistable Lévy Processes". Journal of Theoretical Probability 33, nr 1 (14.09.2018): 153–79. http://dx.doi.org/10.1007/s10959-018-0859-4.
Pełny tekst źródłaHeinzner, Peter, i Henrik Stötzel. "Semistable points with respect to real forms". Mathematische Annalen 338, nr 1 (23.12.2006): 1–9. http://dx.doi.org/10.1007/s00208-006-0063-1.
Pełny tekst źródłaPattanayak, S. K. "Minimal Schubert Varieties Admitting Semistable Points for Exceptional Cases". Communications in Algebra 42, nr 9 (23.04.2014): 3811–22. http://dx.doi.org/10.1080/00927872.2013.795578.
Pełny tekst źródłaLai, K. F. "C2 building and projective space". Journal of the Australian Mathematical Society 76, nr 3 (czerwiec 2004): 383–402. http://dx.doi.org/10.1017/s1446788700009939.
Pełny tekst źródłaVyugin, Il'ya Vladimirovich, i Lada Andreevna Dudnikova. "Stable vector bundles and the Riemann-Hilbert problem on a Riemann surface". Sbornik: Mathematics 215, nr 2 (2024): 141–56. http://dx.doi.org/10.4213/sm9781e.
Pełny tekst źródłaCastella, Francesc. "ON THE EXCEPTIONAL SPECIALIZATIONS OF BIG HEEGNER POINTS". Journal of the Institute of Mathematics of Jussieu 17, nr 1 (4.02.2016): 207–40. http://dx.doi.org/10.1017/s1474748015000444.
Pełny tekst źródłaAbramovich, Dan, i Anthony Várilly-Alvarado. "Campana points, Vojta’s conjecture, and level structures on semistable abelian varieties". Journal de Théorie des Nombres de Bordeaux 30, nr 2 (2018): 525–32. http://dx.doi.org/10.5802/jtnb.1037.
Pełny tekst źródłaTamagawa, Akio. "Ramification of torsion points on curves with ordinary semistable Jacobian varieties". Duke Mathematical Journal 106, nr 2 (luty 2001): 281–319. http://dx.doi.org/10.1215/s0012-7094-01-10623-6.
Pełny tekst źródłaKalabušić, S., M. R. S. Kulenović i E. Pilav. "Multiple Attractors for a Competitive System of Rational Difference Equations in the Plane". Abstract and Applied Analysis 2011 (2011): 1–35. http://dx.doi.org/10.1155/2011/295308.
Pełny tekst źródłaChen, Huachen. "O’Grady’s birational maps and strange duality via wall-hitting". International Journal of Mathematics 30, nr 09 (sierpień 2019): 1950044. http://dx.doi.org/10.1142/s0129167x19500447.
Pełny tekst źródłaRozprawy doktorskie na temat "Semistable points"
Francqueville, Martin. "Fonctions L p-adiques de Rankin-Selberg aux points semistables". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0225.
Pełny tekst źródłaWe can associate a complex L-function to a couple of modular forms. To study this complex L-function, we can construct a p-adic L function which interpolates the values of the complex L-function, up to a multiplicative factor. It can happen that this factor vanishes. in this case, the p-adic L function vanishes, and we lose the information on the complex L-function’s value : this is the trivial zero phenomenon. Conjecturally, it should be possible to recover the information on the complex L-function’s value through the p-adic L-functions’s cyclotomic derivative. In this thesis, we consider the case where one modular form is semistable, while the other one is cristalline. We give the interpolation formula between the complex L-function and the p-adic L-function, and we highlight the conditions needed for a trivial zero to appear. finally, we show a formula giving the p-adic L-function’s cyclotomic derivative as a function of the L invariant and the complex L-function
Scarponi, Danny. "Formes effectives de la conjecture de Manin-Mumford et réalisations du polylogarithme abélien". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30100/document.
Pełny tekst źródłaIn this thesis we approach two independent problems in the field of arithmetic geometry, one regarding the torsion points of abelian varieties and the other the motivic polylogarithm on abelian schemes. The Manin-Mumford conjecture (proved by Raynaud in 1983) states that if A is an abelian variety and X is a subvariety of A not containing any translate of an abelian subvariety of A, then X can only have a finite number of points that are of finite order in A. In 1996, Buium presented an effective form of the conjecture in the case of curves. In this thesis, we show that Buium's argument can be made applicable in higher dimensions to prove a quantitative version of the conjecture for a class of subvarieties with ample cotangent studied by Debarre. Our proof also generalizes to any dimension a result on the sparsity of p-divisible unramified liftings obtained by Raynaud in the case of curves. In 2014, Kings and Roessler showed that the realisation in analytic Deligne cohomology of the degree zero part of the motivic polylogarithm on abelian schemes can be described in terms of the Bismut-Koehler higher analytic torsion form of the Poincaré bundle. In this thesis, using the arithmetic intersection theory in the sense of Burgos, we give a refinement of Kings and Roessler's result in the case in which the base of the abelian scheme is proper
Części książek na temat "Semistable points"
Bini, Gilberto, Fabio Felici, Margarida Melo i Filippo Viviani. "Semistable, Polystable and Stable Points (Part I)". W Lecture Notes in Mathematics, 131–39. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11337-1_11.
Pełny tekst źródłaBini, Gilberto, Fabio Felici, Margarida Melo i Filippo Viviani. "Semistable, Polystable and Stable Points (Part II)". W Lecture Notes in Mathematics, 149–54. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11337-1_13.
Pełny tekst źródła