Gotowa bibliografia na temat „Semidefinite programming”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Semidefinite programming”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Semidefinite programming"

1

Helmberg, C. "Semidefinite programming". European Journal of Operational Research 137, nr 3 (marzec 2002): 461–82. http://dx.doi.org/10.1016/s0377-2217(01)00143-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Vandenberghe, Lieven, i Stephen Boyd. "Semidefinite Programming". SIAM Review 38, nr 1 (marzec 1996): 49–95. http://dx.doi.org/10.1137/1038003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Overton, Michael, i Henry Wolkowicz. "Semidefinite programming". Mathematical Programming 77, nr 1 (kwiecień 1997): 105–9. http://dx.doi.org/10.1007/bf02614431.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Yurtsever, Alp, Joel A. Tropp, Olivier Fercoq, Madeleine Udell i Volkan Cevher. "Scalable Semidefinite Programming". SIAM Journal on Mathematics of Data Science 3, nr 1 (styczeń 2021): 171–200. http://dx.doi.org/10.1137/19m1305045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Vandenberghe, Lieven, i Stephen Boyd. "Applications of semidefinite programming". Applied Numerical Mathematics 29, nr 3 (marzec 1999): 283–99. http://dx.doi.org/10.1016/s0168-9274(98)00098-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Goldfarb, D., i K. Scheinberg. "On parametric semidefinite programming". Applied Numerical Mathematics 29, nr 3 (marzec 1999): 361–77. http://dx.doi.org/10.1016/s0168-9274(98)00102-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kalantari, Bahman. "Semidefinite programming and matrix scaling over the semidefinite cone". Linear Algebra and its Applications 375 (grudzień 2003): 221–43. http://dx.doi.org/10.1016/s0024-3795(03)00664-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lidický, Bernard, i Florian Pfender. "Semidefinite Programming and Ramsey Numbers". SIAM Journal on Discrete Mathematics 35, nr 4 (styczeń 2021): 2328–44. http://dx.doi.org/10.1137/18m1169473.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Bofill, Walter Gómez, i Juan A. Gómez. "LINEAR AND NONLINEAR SEMIDEFINITE PROGRAMMING". Pesquisa Operacional 34, nr 3 (grudzień 2014): 495–520. http://dx.doi.org/10.1590/0101-7438.2014.034.03.0495.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zhang, Tianyu, i Liwei Zhang. "Critical Multipliers in Semidefinite Programming". Asia-Pacific Journal of Operational Research 37, nr 04 (19.05.2020): 2040012. http://dx.doi.org/10.1142/s0217595920400126.

Pełny tekst źródła
Streszczenie:
It was proved in Izmailov and Solodov (2014). Newton-Type Methods for Optimization and Variational Problems, Springer] that the existence of a noncritical multiplier for a (smooth) nonlinear programming problem is equivalent to an error bound condition for the Karush–Kuhn–Thcker (KKT) system without any assumptions. This paper investigates whether this result still holds true for a (smooth) nonlinear semidefinite programming (SDP) problem. The answer is negative: the existence of noncritical multiplier does not imply the error bound condition for the KKT system without additional conditions, which is illustrated by an example. In this paper, we obtain characterizations, in terms of the problem data, the critical and noncritical multipliers for a SDP problem. We prove that, for the SDP problem, the noncriticality property can be derived from the error bound condition for the KKT system without any assumptions, and we give an example to show that the noncriticality does not imply the error bound for the KKT system. We propose a set of assumptions under which the error bound condition for the KKT system can be derived from the noncriticality property. a Finally, we establish a new error bound for [Formula: see text]-part, which is expressed by both perturbation and the multiplier estimation.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Semidefinite programming"

1

Zhu, Yuntao. "Semidefinite programming under uncertainty". Online access for everyone, 2006. http://www.dissertations.wsu.edu/Dissertations/summer2006/y%5Fzhu%5F073106.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Jibrin, Shafiu. "Redundancy in semidefinite programming". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0010/NQ32337.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Jibrin, Shafiu Carleton University Dissertation Mathematics and Statistics. "Redundancy in semidefinite programming". Ottawa, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wei, Hua. "Numerical Stability in Linear Programming and Semidefinite Programming". Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2922.

Pełny tekst źródła
Streszczenie:
We study numerical stability for interior-point methods applied to Linear Programming, LP, and Semidefinite Programming, SDP. We analyze the difficulties inherent in current methods and present robust algorithms.

We start with the error bound analysis of the search directions for the normal equation approach for LP. Our error analysis explains the surprising fact that the ill-conditioning is not a significant problem for the normal equation system. We also explain why most of the popular LP solvers have a default stop tolerance of only 10-8 when the machine precision on a 32-bit computer is approximately 10-16.

We then propose a simple alternative approach for the normal equation based interior-point method. This approach has better numerical stability than the normal equation based method. Although, our approach is not competitive in terms of CPU time for the NETLIB problem set, we do obtain higher accuracy. In addition, we obtain significantly smaller CPU times compared to the normal equation based direct solver, when we solve well-conditioned, huge, and sparse problems by using our iterative based linear solver. Additional techniques discussed are: crossover; purification step; and no backtracking.

Finally, we present an algorithm to construct SDP problem instances with prescribed strict complementarity gaps. We then introduce two measures of strict complementarity gaps. We empirically show that: (i) these measures can be evaluated accurately; (ii) the size of the strict complementarity gaps correlate well with the number of iteration for the SDPT3 solver, as well as with the local asymptotic convergence rate; and (iii) large strict complementarity gaps, coupled with the failure of Slater's condition, correlate well with loss of accuracy in the solutions. In addition, the numerical tests show that there is no correlation between the strict complementarity gaps and the geometrical measure used in [31], or with Renegar's condition number.
Style APA, Harvard, Vancouver, ISO itp.
5

Zanjácomo, Paulo Régis. "On weighted paths for nonlinear semidefinite complementarity problems and newton methods for semidefinite programming". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/21680.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ye, Kai. "Applications of semidefinite programming in finance". Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508489.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Keuchel, Jens. "Image partitioning based on semidefinite programming". [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11513861.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Qian, Xun. "Continuous methods for convex programming and convex semidefinite programming". HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/422.

Pełny tekst źródła
Streszczenie:
In this thesis, we study several interior point continuous trajectories for linearly constrained convex programming (CP) and convex semidefinite programming (SDP). The continuous trajectories are characterized as the solution trajectories of corresponding ordinary differential equation (ODE) systems. All our ODE systems are closely related to interior point methods.. First, we propose and analyze three continuous trajectories, which are the solutions of three ODE systems for linearly constrained convex programming. The three ODE systems are formulated based on an variant of the affine scaling direction, the central path, and the affine scaling direction in interior point methods. The resulting solutions of the first two ODE systems are called generalized affine scaling trajectory and generalized central path, respectively. Under some mild conditions, the properties of the continuous trajectories, the optimality and convergence of the continuous trajectories are all obtained. Furthermore, we show that for the example of Gilbert et al. [Math. Program., { 103}, 63-94 (2005)], where the central path does not converge, our generalized central path converges to an optimal solution of the same example in the limit.. Then we analyze two primal dual continuous trajectories for convex programming. The two continuous trajectories are derived from the primal-dual path-following method and the primal-dual affine scaling method, respectively. Theoretical properties of the two interior point continuous trajectories are fully studied. The optimality and convergence of both interior point continuous trajectories are obtained for any interior feasible point under some mild conditions. In particular, with proper choice of some parameters, the convergence for both continuous trajectories does not require the strict complementarity or the analyticity of the objective function.. For convex semidefinite programming, four interior continuous trajectories defined by matrix differential equations are proposed and analyzed. Optimality and convergence of the continuous trajectories are also obtained under some mild conditions. We also propose a strategy to guarantee the optimality of the affine scaling algorithm for convex SDP.
Style APA, Harvard, Vancouver, ISO itp.
9

Shen, Yijiang. "Binary image restoration by positive semidefinite programming and signomial programming". Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39557431.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

沈逸江 i Yijiang Shen. "Binary image restoration by positive semidefinite programming and signomial programming". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39557431.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Semidefinite programming"

1

Wolkowicz, Henry, Romesh Saigal i Lieven Vandenberghe, red. Handbook of Semidefinite Programming. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4381-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

de Klerk, Etienne. Aspects of Semidefinite Programming. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b105286.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gärtner, Bernd, i Jiri Matousek. Approximation Algorithms and Semidefinite Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22015-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Gärtner, Bernd. Approximation algorithms and semidefinite programming. Heidelberg: Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Polyhedral and semidefinite programming methods in combinatorial optimization. Providence, R.I: American Mathematical Society, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Tuncel, Levent. Polyhedral and semidefinite programming methods in combinatorial optimization. Providence, R.I: American Mathematical Society, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Henry, Wolkowicz, Saigal Romesh i Vandenberghe Lieven, red. Handbook of semidefinite programming: Theory, algorithms, and applications. Boston: Kluwer Academic Publishers, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Aspects of semidefinite programming: Interior point algorithms and selected applications. Dordrecht: Kluwer Academic Publishers, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Klerk, Etienne de. Aspects of semidefinite programming: Interior point algorithms and selected applications. New York: Springer, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Matoušek, Jiří. Approximation Algorithms and Semidefinite Programming. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Semidefinite programming"

1

Ramana, Motakuri V., i Panos M. Pardalos. "Semidefinite Programming". W Applied Optimization, 369–98. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-3449-1_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Jansen, Benjamin. "Semidefinite Programming". W Interior Point Techniques in Optimization, 221–39. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-5561-9_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Du, Ding-Zhu, Panos M. Pardalos i Weili Wu. "Semidefinite Programming". W Nonconvex Optimization and Its Applications, 201–13. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-5795-8_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Du, Ding-Zhu, Ker-I. Ko i Xiaodong Hu. "Semidefinite Programming". W Design and Analysis of Approximation Algorithms, 339–70. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1701-9_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Vazirani, Vijay V. "Semidefinite Programming". W Approximation Algorithms, 255–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-04565-7_26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Shen, Chunhua, i Anton van den Hengel. "Semidefinite Programming". W Computer Vision, 717–19. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-0-387-31439-6_688.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Shen, Chunhua, i Anton van den Hengel. "Semidefinite Programming". W Computer Vision, 1131–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63416-2_688.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gärtner, Bernd, i Jiří Matoušek. "Semidefinite Programming". W Approximation Algorithms and Semidefinite Programming, 15–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22015-9_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Floudas, Christodoulos A., Pãnos M. Pardalos, Claire S. Adjiman, William R. Esposito, Zeynep H. Gümüş, Stephen T. Harding, John L. Klepeis, Clifford A. Meyer i Carl A. Schweiger. "Semidefinite Programming Problems". W Nonconvex Optimization and Its Applications, 251–61. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-3040-1_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

van Hoeve, Willem-Jan. "Semidefinite Programming and Constraint Programming". W Handbook on Semidefinite, Conic and Polynomial Optimization, 635–68. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0769-0_22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Semidefinite programming"

1

Krechetov, Mikhail, Jakub Marecek, Yury Maximov i Martin Takac. "Entropy-Penalized Semidefinite Programming". W Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/157.

Pełny tekst źródła
Streszczenie:
Low-rank methods for semi-definite programming (SDP) have gained a lot of interest recently, especially in machine learning applications. Their analysis often involves determinant-based or Schatten-norm penalties, which are difficult to implement in practice due to high computational efforts. In this paper, we propose Entropy-Penalized Semi-Definite Programming (EP-SDP), which provides a unified framework for a broad class of penalty functions used in practice to promote a low-rank solution. We show that EP-SDP problems admit an efficient numerical algorithm, having (almost) linear time complexity of the gradient computation; this makes it useful for many machine learning and optimization problems. We illustrate the practical efficiency of our approach on several combinatorial optimization and machine learning problems.
Style APA, Harvard, Vancouver, ISO itp.
2

Le, Tuan Anh, i Mohammad Reza Nakhai. "Coordinated beamforming using semidefinite programming". W ICC 2012 - 2012 IEEE International Conference on Communications. IEEE, 2012. http://dx.doi.org/10.1109/icc.2012.6364232.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Choi, Hyungjin, Peter J. Seiler i Sairaj V. Dhople. "Uncertainty propagation with Semidefinite Programming". W 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7403157.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Berta, Mario, Francesco Borderi, Omar Fawzi i Volkher B. Scholz. "Quantum Coding via Semidefinite Programming". W 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849325.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bandeira, Afonso S., Moses Charikar, Amit Singer i Andy Zhu. "Multireference alignment using semidefinite programming". W ITCS'14: Innovations in Theoretical Computer Science. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2554797.2554839.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Li, Wei, Fangzhou Wang, José M. F. Moura i R. D. Blanton. "Global Floorplanning via Semidefinite Programming". W 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE, 2023. http://dx.doi.org/10.1109/dac56929.2023.10247967.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Primbs, J. A. "Option pricing bounds via semidefinite programming". W 2006 American Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/acc.2006.1656391.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Jensen, Tobias Lindstrom, i Lieven Vandenberghe. "Multi-pitch estimation using semidefinite programming". W 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7952946.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Noureddine, Hadi, Damien Castelain i Ramesh Pyndiah. "Cooperative network localizability via semidefinite programming". W 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC 2011). IEEE, 2011. http://dx.doi.org/10.1109/pimrc.2011.6139714.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Manchester, Zachary R., i Mason A. Peck. "Recursive Inertia Estimation with Semidefinite Programming". W AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-1902.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Semidefinite programming"

1

Ariyawansa, K. A., i Yuntao Zhu. Chance-Constrained Semidefinite Programming. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2000. http://dx.doi.org/10.21236/ada530454.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ariyawansa, K. A. Stochastic Semidefinite Programming: Applications and Algorithms. Fort Belvoir, VA: Defense Technical Information Center, marzec 2012. http://dx.doi.org/10.21236/ada573242.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Benson, S. J., i Y. Ye. DSDP5 user guide - software for semidefinite programming. Office of Scientific and Technical Information (OSTI), styczeń 2006. http://dx.doi.org/10.2172/947970.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Jin, Shengping, K. A. Ariyawansa i Yuntao Zhu. Homogeneous Self-Dual Algorithms for Stochastic Semidefinite Programming. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2011. http://dx.doi.org/10.21236/ada544763.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Overton, Michael L. Final report, DOE Grant DE-FG02-98ER25352, Computational semidefinite programming. Office of Scientific and Technical Information (OSTI), wrzesień 2002. http://dx.doi.org/10.2172/806634.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Mazziotti, David A. Parallel Large-scale Semidefinite Programming for Strong Electron Correlation: Using Correlation and Entanglement in the Design of Efficient Energy-Transfer Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2014. http://dx.doi.org/10.21236/ada617270.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii