Gotowa bibliografia na temat „Semiconductors - Advance Device Applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Semiconductors - Advance Device Applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Semiconductors - Advance Device Applications"
Kizilyalli, Isik C., Olga Blum Spahn i Eric P. Carlson. "(Invited) Recent Progress in Wide-Bandgap Semiconductor Devices for a More Electric Future". ECS Transactions 109, nr 8 (30.09.2022): 3–12. http://dx.doi.org/10.1149/10908.0003ecst.
Pełny tekst źródłaKizilyalli, Isik C., Olga Blum Spahn i Eric P. Carlson. "(Invited) Recent Progress in Wide-Bandgap Semiconductor Devices for a More Electric Future". ECS Meeting Abstracts MA2022-02, nr 37 (9.10.2022): 1344. http://dx.doi.org/10.1149/ma2022-02371344mtgabs.
Pełny tekst źródłaHasan, Md Nazmul, Edward Swinnich i Jung-Hun Seo. "Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics". International Journal of High Speed Electronics and Systems 28, nr 01n02 (marzec 2019): 1940004. http://dx.doi.org/10.1142/s0129156419400044.
Pełny tekst źródłaYater, J. E. "Secondary electron emission and vacuum electronics". Journal of Applied Physics 133, nr 5 (7.02.2023): 050901. http://dx.doi.org/10.1063/5.0130972.
Pełny tekst źródłaKouvetakis, J., Jose Menendez i John Tolle. "Advanced Si-based Semiconductors for Energy and Photonic Applications". Solid State Phenomena 156-158 (październik 2009): 77–84. http://dx.doi.org/10.4028/www.scientific.net/ssp.156-158.77.
Pełny tekst źródłaHe, Yashuo, Haotian Wan, Xiaoning Jiang i Chang Peng. "Piezoelectric Micromachined Ultrasound Transducer Technology: Recent Advances and Applications". Biosensors 13, nr 1 (29.12.2022): 55. http://dx.doi.org/10.3390/bios13010055.
Pełny tekst źródłaAl-bayati, Ali Mahmoud Salman. "Behavior, Switching Losses, and Efficiency Enhancement Potentials of 1200 V SiC Power Devices for Hard-Switched Power Converters". CPSS Transactions on Power Electronics and Applications 7, nr 2 (30.06.2022): 113–29. http://dx.doi.org/10.24295/cpsstpea.2022.00011.
Pełny tekst źródłaJiang, He, Jibiao Jin, Zijie Wang, Wuji Wang, Runfeng Chen, Ye Tao, Qin Xue, Chao Zheng, Guohua Xie i Wei Huang. "Constructing Donor-Resonance-Donor Molecules for Acceptor-Free Bipolar Organic Semiconductors". Research 2021 (9.02.2021): 1–10. http://dx.doi.org/10.34133/2021/9525802.
Pełny tekst źródłaOshima, Yuichi, i Elaheh Ahmadi. "Progress and challenges in the development of ultra-wide bandgap semiconductor α-Ga2O3 toward realizing power device applications". Applied Physics Letters 121, nr 26 (26.12.2022): 260501. http://dx.doi.org/10.1063/5.0126698.
Pełny tekst źródłaCarlson, Eric P., Daniel W. Cunningham, Yan Zhi Xu i Isik C. Kizilyalli. "Power Electronic Devices and Systems Based on Bulk GaN Substrates". Materials Science Forum 924 (czerwiec 2018): 799–804. http://dx.doi.org/10.4028/www.scientific.net/msf.924.799.
Pełny tekst źródłaRozprawy doktorskie na temat "Semiconductors - Advance Device Applications"
Chang, Ruey-dar. "Physics and modeling of dopant diffusion for advanced device applications /". Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Pełny tekst źródłaStella, Marco. "Study of Organic Semiconductors for Device Applications". Doctoral thesis, Universitat de Barcelona, 2010. http://hdl.handle.net/10803/21620.
Pełny tekst źródłaLos semiconductores orgánicos están siendo investigados como alternativos a materiales más tradicionales, como el silicio, para la fabricación de varios tipos de dispositivos electrónicos. Las ventajas que presentan tales materiales son flexibilidad, ligereza, rapidez y bajo coste de los métodos de producción de los dispositivos orgánicos. En esta tesis se analizan algunos semiconductores orgánicos de molécula pequeña para su aplicación en dispositivos como los transistores en capa delgada y las células fotovoltaicas. Tales materiales, depositados en capa delgada por evaporación térmica en vacío, son ftalocianina de cobre (CuPc) y pentaceno, de tipo p, fullereno (C60), PTCDA y PTCDI-C13, de tipo n. Se analizan las propiedades ópticas de ellos por medio de la medida de Trasmitancia Óptica y de la Espectroscopia de Deflección Fototérmica (PDS). Además se analiza la microestructura de las capas delgadas por difracción de rayos X (XRD) con el objetivo de observar si las capas tienen estructura amorfa o policristalina. Los datos son utilizados para calcular el gap óptico (Eg) y la energía de Urbach (Eu). Se analiza la estabilidad de los materiales con el pasar del tiempo y la exposición a irradiación directa, por un lado, y a la atmosfera, por otro lado. El fullereno es el único material que se deposita con estructura amorfa. Además se ha observado que CuPc y PTCDA son estables frente a la degradación por exposición a agentes oxidantes. Las células fotovoltaicas orgánicas incluyen siempre una heterounión entre dos semiconductores, así que se repite el mismo estudio sobre mezclas de dos materiales, uno de tipo p y otro de tipo n, probando todas las combinaciones posibles con los materiales analizados. Se observa que en una mezcla que incluya un material que presenta inestabilidad también hay degradación. Los tratamientos térmicos efectuados sobre las muestras han permiten obtener una parcial cristalización de algunos materiales pero no de otros y no llevan a recuperar las propiedades ópticas originarias, perdidas con la degradación. Finalmente, se fabrican dos tipos de dispositivos: TFTs de PTCDI-C13 y diodos de CuPc. En el primer caso se obtienen resultados interesantes, detectando que los dispositivos funcionan como típicos transistores en capa delgada de tipo n. En el segundo caso se observa el típico comportamiento de los diodos. Sin embargo, la respuesta con luz de tales dispositivos, de estructura análoga a fotocélulas de tipo Schottky, es muy escasa.
Salem, Ali F. "Advanced numerical simulation modeling for semiconductor devices and it application to metal-semiconductor-metal photodetectors". Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/13834.
Pełny tekst źródłaForgie, John. "The study of organic semiconductors towards device applications". Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=22624.
Pełny tekst źródłaCheng, Cheng. "Semiconductor colloidal quantum dots for photovoltaic applications". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:07baccd0-2098-4306-8a9a-49160ec6a15a.
Pełny tekst źródłaKwok, Kwong Chau. "Transport and device applications of organic photovoltaic materials". HKBU Institutional Repository, 2010. http://repository.hkbu.edu.hk/etd_ra/1164.
Pełny tekst źródłaTant, Julien. "Discotic liquid crystals as organic semiconductors for photovoltaic device applications". Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211134.
Pełny tekst źródłaUne alternative pourrait provenir des matériaux semi-conducteurs organiques. En effet, l’utilisation de méthodes de mise en œuvre à partir de solutions pourrait permettre la fabrication de dispositifs flexibles et bon marché. Des résultats encourageants ont été obtenus avec des polymères conjugués et de petites molécules organiques. Les cristaux liquides discotiques CLDs forment une catégorie particulièrement intéressante de matériaux. Ils ont en effet la capacité de s’organiser spontanément en colonnes de molécules, formant des semi-conducteurs à une dimension. Leurs propriétés intéressantes en tant que semi-conducteurs, combinées à une mise en œuvre facile, en font de bons candidats pour de futures applications.
Dans ce travail, deux familles complémentaires de matériaux discotiques ont été développées, formant une paire de semi-conducteurs de type n et p. Leurs structures chimiques ont été étudiées en vue d'obtenir des matériaux possédant un ensemble de propriétés choisies afin d’optimiser les paramètres clefs du processus de photo-génération de charges. Ces propriétés sont les suivantes: forte absorption de la lumière dans le visible, fort caractère semi-conducteur de type n ou p, pas de phase cristalline à température ambiante, présence d'une phase cristal liquide colonne, phase isotrope en dessous de 200°C. De plus, les matériaux doivent être accessibles en un nombre minimum d’étapes d’une synthèse efficace, et ce avec un haut niveau de pureté. Ils doivent également être fortement solubles dans les solvants organiques usuels.
Cette étude comporte, pour chacune des deux familles de matériaux, le design de leur structure chimique, leur synthèse et la caractérisation de leurs propriétés physiques (thermotropes, optoélectroniques, électrochimiques). Comme possible semi-conducteur de type p, cinq dérivés tétrasubstitués de la phthalocyanine non-métallée ont été synthétisés, donnant un matériau possédant l’ensemble des propriétés recherchées. Comme possible semi-conducteur de type n, six dérivés hexasubstitués de l’hexaazatrinaphthylène ont été étudiés. L’un d’eux possède les propriétés requises.
Finalement, les propriétés optoélectroniques et photovoltaïques de mélanges des deux matériaux les plus prometteurs, ensemble ou avec d’autres matériaux, ont été étudiées. Des cellules solaires de rendement maximum de 1 % ont été obtenues pour deux dispositifs de compositions différentes.
Ces rendements, bien qu’inférieurs à ceux obtenus précédemment par d’autres groupes (jusqu’à 34 % à ce jour), sont néanmoins révélateurs des potentialités des matériaux organiques, et plus particulièrement des cristaux liquides discotiques, pour de futures applications dans le domaine des dispositifs électroniques.
Doctorat en sciences, Spécialisation chimie
info:eu-repo/semantics/nonPublished
Urban, H. "Three-dimensional device structures for photovoltaic applications". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e308d352-b342-4c44-a5f6-53121e2cc267.
Pełny tekst źródłaSit, Jon Wai Yu. "Growth and characterization of organic/inorganic thin films for photonic device applications". HKBU Institutional Repository, 2015. https://repository.hkbu.edu.hk/etd_oa/179.
Pełny tekst źródłaEiting, Christopher James. "Growth of III-V nitride materials by MOCVD for device applications /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Pełny tekst źródłaKsiążki na temat "Semiconductors - Advance Device Applications"
Sharma, Ashok K. Advanced semiconductor memories: Architectures, designs, and applications. Piscataway, NJ: IEEE Press, 2003.
Znajdź pełny tekst źródłaMitra, Dutta, i Stroscio Michael A. 1949-, red. Advanced semiconductor heterostructures: Novel devices, potential device applications and basic properties. Singapore: World Scientific, 2003.
Znajdź pełny tekst źródła1943-, Barnham Keith, i Vvedensky Dimitri D, red. Low-dimensional semiconductor structures: Fundamentals and device applications. Cambridge, U.K: Cambridge University Press, 2001.
Znajdź pełny tekst źródłaSelf-organized organic semiconductors: From materials to device applications. Hoboken, N.J: Wiley, 2011.
Znajdź pełny tekst źródłaTopical Meeting on Advanced Semiconductor Lasers and Their Applications (1999 Santa Barbara, California). Advanced semiconductor lasers and their applications: From the Topical Meeting on Advanced Semiconductor Lasers and Their Applications, July 21-23, 1999, Santa Barbara, California. Washington, DC: Optical Society of America, 2000.
Znajdź pełny tekst źródłaNobuyoshi, Koshida, i SpringerLink (Online service), red. Device Applications of Silicon Nanocrystals and Nanostructures. Boston, MA: Springer US, 2009.
Znajdź pełny tekst źródłaLiquid-phase epitaxial growth of III-V compound semiconductor materials and their device applications. Bristol: A. Hilger, 1990.
Znajdź pełny tekst źródłaSemiconductor device-based sensors for gas, chemical, and biomedical applications. Boca Raton, Fla: CRC, 2011.
Znajdź pełny tekst źródła1948-, Chen David, red. Semiconductor optoelectronic device manufacturing and applications: 7-9 November 2001, Nanjing, China. Bellingham, Wash., USA: SPIE, 2001.
Znajdź pełny tekst źródłaB, Gil, i Aulombard R. L, red. Semiconductor heteroepitaxy: Growth, characterization, and device applications : Montpellier, France, 4-7 July 1995. Singapore: World Scientific, 1995.
Znajdź pełny tekst źródłaCzęści książek na temat "Semiconductors - Advance Device Applications"
Timans, P. J., G. Xing, J. Cibere, S. Hamm i S. McCoy. "Millisecond Annealing for Semiconductor Device Applications". W Subsecond Annealing of Advanced Materials, 229–70. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03131-6_13.
Pełny tekst źródłaGupta, K. M., i Nishu Gupta. "Semiconductor Materials: Their Properties, Applications, and Recent Advances". W Advanced Semiconducting Materials and Devices, 3–40. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19758-6_1.
Pełny tekst źródłaDugaev, Vitalii K., i Vladimir I. Litvinov. "Magnetic Semiconductors". W Modern Semiconductor Physics and Device Applications, 207–26. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429285929-11.
Pełny tekst źródłaKalachev, Leonid V. "Some Applications of Asymptotic Methods in Semiconductor Device Modeling". W Semiconductors, 209–21. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4613-8410-6_11.
Pełny tekst źródłaGhibaudo, G. "Mobility Characterization in Advanced FD-SOI CMOS Devices". W Semiconductor-On-Insulator Materials for Nanoelectronics Applications, 307–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15868-1_17.
Pełny tekst źródłaDugaev, Vitalii K., i Vladimir I. Litvinov. "Quantum Confinement in Semiconductors". W Modern Semiconductor Physics and Device Applications, 27–41. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429285929-2.
Pełny tekst źródłaPearton, Stephen J., James W. Corbett i Michael Stavola. "Prevalence of Hydrogen Incorporation and Device Applications". W Hydrogen in Crystalline Semiconductors, 282–318. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84778-3_11.
Pełny tekst źródłaDugaev, Vitalii K., i Vladimir I. Litvinov. "Impurities and Disorder in Semiconductors". W Modern Semiconductor Physics and Device Applications, 43–67. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429285929-3.
Pełny tekst źródłaDugaev, Vitalii K., i Vladimir I. Litvinov. "Statistics of Electrons in Semiconductors". W Modern Semiconductor Physics and Device Applications, 69–80. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429285929-4.
Pełny tekst źródłaDugaev, Vitalii K., i Vladimir I. Litvinov. "Spin-Resolved Transport in Semiconductors". W Modern Semiconductor Physics and Device Applications, 175–89. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429285929-9.
Pełny tekst źródłaStreszczenia konferencji na temat "Semiconductors - Advance Device Applications"
Ross, Jennifer, Nathan Newman i Mike Rubin. "GaN for short-wavelength light emitting devices: growth kinetics and techniques". W Compact Blue-Green Lasers. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/cbgl.1993.cthc.3.
Pełny tekst źródłaGrzybowski, Richard R., i Ben Gingrich. "High Temperature Silicon Integrated Circuits and Passive Components for Commercial and Military Applications". W ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-362.
Pełny tekst źródłaDu, A. Y., J. Zhu, Y. K. Zhou, B. H. Liu, Eddie Er, Z. Q. Mo, S. P. Zhao i Jeffrey Lam. "Advanced TEM applications in semiconductor devices". W 2014 IEEE 21st International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2014. http://dx.doi.org/10.1109/ipfa.2014.6898193.
Pełny tekst źródłaDePoy, D. M., R. J. Dziendziel, G. W. Charache, P. F. Baldasaro i B. C. Campbell. "Interference Filters for Thermophotovoltaic Applications". W Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.thc.5.
Pełny tekst źródłaMeyer-Friedrichsen, Timo, Andreas Elschner, Frank Keohan, Wilfried Lövenich i Sergei A. Ponomarenko. "Conductors and semiconductors for advanced organic electronics". W SPIE Photonic Devices + Applications, redaktorzy Zhenan Bao i Iain McCulloch. SPIE, 2009. http://dx.doi.org/10.1117/12.826270.
Pełny tekst źródłaMeyer-Friedrichsen, Timo, Wilfried Lövenich i Ron Lubianez. "Conductors and semiconductors for advanced organic electronics". W SPIE Photonic Devices + Applications, redaktorzy Zhenan Bao i Iain McCulloch. SPIE, 2011. http://dx.doi.org/10.1117/12.898648.
Pełny tekst źródłaJiang, Ziping, I. H. White, F. Laughton, R. V. Penty, M. W. McCall i H. K. Tsang. "High power diffraction-limited ultrashort pulse generation from double tapered semiconductor laser diodes". W Semiconductor Lasers: Advanced Devices and Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/slada.1995.tue.5.
Pełny tekst źródłaWaltman, S., K. Petrov, U. Simon, L. Hollberg, F. Tittel i R. Curl. "Tunable Infrared Source by Difference Frequency Mixing Diode lasers and Diode pumped YAG, and Application to Methane Detection". W Semiconductor Lasers: Advanced Devices and Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/slada.1995.mb.4.
Pełny tekst źródłaOrtolland, S. "4H-SiC SIT device for RF heating applications". W IEE Colloquium Advances in Semiconductor Devices. IEE, 1999. http://dx.doi.org/10.1049/ic:19990150.
Pełny tekst źródłaOlego, Diego. "Status and Prospects of Blue and Green Semiconductor Lasers". W Symposium on Optical Memory. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/isom.1996.ofb.2.
Pełny tekst źródłaRaporty organizacyjne na temat "Semiconductors - Advance Device Applications"
OPTICAL SOCIETY OF AMERICA WASHINGTON DC. Summaries of the Papers Presented at the Topical Meeting Semiconductor Lasers, Advanced Devices and Applications Held in Keystone, Colorado on 21-23 August 1995. Technical Digest Series. Volume 20. Fort Belvoir, VA: Defense Technical Information Center, sierpień 1995. http://dx.doi.org/10.21236/ada306078.
Pełny tekst źródła