Gotowa bibliografia na temat „Semiconductor-Semiconductor Core Shell Nanomaterials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Semiconductor-Semiconductor Core Shell Nanomaterials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Semiconductor-Semiconductor Core Shell Nanomaterials"
Wang, Feifan, Yanjie Huang, Zhigang Chai, Min Zeng, Qi Li, Yuan Wang i Dongsheng Xu. "Photothermal-enhanced catalysis in core–shell plasmonic hierarchical Cu7S4microsphere@zeolitic imidazole framework-8". Chemical Science 7, nr 12 (2016): 6887–93. http://dx.doi.org/10.1039/c6sc03239g.
Pełny tekst źródłaZhang, Junjie, Suling Zhao, Zheng Xu, Ligang Zhang, Pengfei Zuo i Qixiao Wu. "Near-infrared light-driven photocatalytic NaYF4:Yb,Tm@ZnO core/shell nanomaterials and their performance". RSC Advances 9, nr 7 (2019): 3688–92. http://dx.doi.org/10.1039/c8ra07861k.
Pełny tekst źródłaVahidzadeh, Ehsan, i Karthik Shankar. "Insights into the Machine Learning Predictions of the Optical Response of Plasmon@Semiconductor Core-Shell Nanocylinders". Photochem 3, nr 1 (2.03.2023): 155–70. http://dx.doi.org/10.3390/photochem3010010.
Pełny tekst źródłaBi, Qingyuan, Xieyi Huang, Yanchun Dong i Fuqiang Huang. "Conductive Black Titania Nanomaterials for Efficient Photocatalytic Degradation of Organic Pollutants". Catalysis Letters 150, nr 5 (25.11.2019): 1346–54. http://dx.doi.org/10.1007/s10562-019-02941-1.
Pełny tekst źródłaXue, Shirui, Sicheng Cao, Zhaoling Huang, Daoguo Yang i Guoqi Zhang. "Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review". Materials 14, nr 15 (30.07.2021): 4263. http://dx.doi.org/10.3390/ma14154263.
Pełny tekst źródłaChatterjee, Aniruddha, i Dharmesh Hansora. "Graphene Based Functional Hybrid Nanostructures: Preparation, Properties and Applications". Materials Science Forum 842 (luty 2016): 53–75. http://dx.doi.org/10.4028/www.scientific.net/msf.842.53.
Pełny tekst źródłaSon, Jae Sung, Jong-Soo Lee, Elena V. Shevchenko i Dmitri V. Talapin. "Magnet-in-the-Semiconductor Nanomaterials: High Electron Mobility in All-Inorganic Arrays of FePt/CdSe and FePt/CdS Core–Shell Heterostructures". Journal of Physical Chemistry Letters 4, nr 11 (22.05.2013): 1918–23. http://dx.doi.org/10.1021/jz400612d.
Pełny tekst źródłaGarcía, Javier, Ruth Gutiérrez, Ana S. González, Ana I. Jiménez-Ramirez, Yolanda Álvarez, Víctor Vega, Heiko Reith i in. "Exchange Bias Effect of Ni@(NiO,Ni(OH)2) Core/Shell Nanowires Synthesized by Electrochemical Deposition in Nanoporous Alumina Membranes". International Journal of Molecular Sciences 24, nr 8 (11.04.2023): 7036. http://dx.doi.org/10.3390/ijms24087036.
Pełny tekst źródłaNaderi, Saeed, Hakimeh Zare, Nima Taghavinia, Azam Irajizad, Mahmoud Aghaei i Mojtaba Panjehpour. "Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines". Toxicology and Industrial Health 34, nr 5 (28.03.2018): 339–52. http://dx.doi.org/10.1177/0748233718763517.
Pełny tekst źródłaReiss, Peter, Myriam Protière i Liang Li. "Core/Shell Semiconductor Nanocrystals". Small 5, nr 2 (20.01.2009): 154–68. http://dx.doi.org/10.1002/smll.200800841.
Pełny tekst źródłaRozprawy doktorskie na temat "Semiconductor-Semiconductor Core Shell Nanomaterials"
Fairclough, Simon Michael. "Carrier dynamics within semiconductor nanocrystals". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:857f624d-d93d-498d-910b-73cce12c4e0b.
Pełny tekst źródłaAlzahrani, Hanan Yahya S. "Non linear piezoelectricity in wurtzite semiconductor core-shell nanowires : an atomistic modelling approach". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/non-linear-piezoelectricity-in-wurtzite-semiconductor-coreshell-nanowires-an-atomistic-modelling-approach(b4be879a-b85f-4e58-81d7-79f304baa23d).html.
Pełny tekst źródłaGuan, Xin. "Growth of semiconductor ( core) / functional oxide ( shell) nanowires : application to photoelectrochemical water splitting". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC057/document.
Pełny tekst źródłaThe objective of this PhD is to develop the network of GaAs (core) / oxide (shell) nanowires for solar water splitting. The geometry of the GaAs nanowires was firstly optimized by adjusting different experimental parameters of the self-catalyzed growth of these nanowires by molecular beam epitaxy. We then systematically studied the surface oxidation of the GaAs nanowires and its negative effect on the growth of the shell. We have therefore developed a method called the arsenic (As) capping / decapping method that protects the facets of nanowires from the oxidation. A physico-chemical study has shown the beneficial effect of such a method on the growth of the shell. The growth of a SrTiO3 shell on GaAs nanowires was then performed. In-depth characterizations of SrTiO3 shell growth on GaAs nanowires were carried out. Most of the SrTiO3 perovskite structure was in epitaxial relationship with the GaAs crystalline lattice. The last part of this thesis concerns the application of such GaAs / oxide nanowire networks to PEC devices where the oxide serves as a passivation layer. The influence of the doping and the morphology of GaAs nanowires was first studied. The properties of GaAs / SrTiO3 and GaAs / TiO2 nanowire networks used as photoelectrodes in PEC devices are finally studied
Xu, Yang. "Synthesis and Characterization of Silica Coated CdSe/CdS Core/Shell Quantum Dots". Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/29974.
Pełny tekst źródłaPh. D.
Du, Sichao. "Atom probe microscopy of III-V semiconductor nanowires". Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10219.
Pełny tekst źródłaBohorquez, Ballen Jaime. "Thermal transport in low dimensional semiconductor nanostructures". OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/798.
Pełny tekst źródłaQu, Jiangtao. "Atom-Scale Insights into III-V Semiconductor Nanowires". Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17851.
Pełny tekst źródłaBhatnagar, Mehar. "Semiconductor core-shell and alloy nanoparticles (group iv) for photovoltaics, gas sensing and plasmonic applications". Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8112.
Pełny tekst źródłaGirgel, Ionut. "Development of InGaN/GaN core-shell light emitters". Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.720648.
Pełny tekst źródłaAngell, Joshua James. "SYNTHESIS AND CHARACTERIZATION OF CdSe-ZnS CORE-SHELL QUANTUM DOTS FOR INCREASED QUANTUM YIELD". DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/594.
Pełny tekst źródłaKsiążki na temat "Semiconductor-Semiconductor Core Shell Nanomaterials"
Gupta, Raju Kumar, i Mrinmoy Misra. Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications. Elsevier, 2017.
Znajdź pełny tekst źródłaMetal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications. Elsevier Science & Technology Books, 2017.
Znajdź pełny tekst źródłaCzęści książek na temat "Semiconductor-Semiconductor Core Shell Nanomaterials"
Bailey, R. E., i S. Nie. "Core-Shell Semiconductor Nanocrystals for Biological Labeling". W The Chemistry of Nanomaterials, 405–17. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/352760247x.ch12.
Pełny tekst źródłaBayal, Manikanta, Neeli Chandran, Rajendra Pilankatta i Swapna S. Nair. "Semiconductor Quantum Dots and Core Shell Systems for High Contrast Cellular/Bio Imaging". W Nanomaterials for Luminescent Devices, Sensors, and Bio-imaging Applications, 27–38. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5367-4_3.
Pełny tekst źródłaHazra, Purnima, i S. Jit. "Electrical Characteristics of Si/ZnO Core–Shell Nanowire Heterojunction Diode". W Physics of Semiconductor Devices, 673–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_173.
Pełny tekst źródłaMehta, Aarti, Shailesh N. Sharma, Kanchan Sharma, Parth Vashishtha i S. Chand. "Single-Pot Rapid Synthesis of Colloidal Core/Core-Shell Quantum Dots: A Novel Polymer-Nanocrystal Hybrid Material". W Physics of Semiconductor Devices, 315–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_79.
Pełny tekst źródłaYadav, Amar Nath, Ashwani Kumar Singh i Kedar Singh. "Synthesis, Properties, and Applications of II–VI Semiconductor Core/Shell Quantum Dots". W Core/Shell Quantum Dots, 1–28. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46596-4_1.
Pełny tekst źródłaOzel, Tuncay. "Hybrid Semiconductor Core-Shell Nanowires with Tunable Plasmonic Nanoantennas". W Coaxial Lithography, 27–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45414-6_3.
Pełny tekst źródłaSharma, Shailja, Babita Kumari, Nirupama Singh, Anuradha Verma, Vibha R. Satsangi, Sahab Dass i Rohit Shrivastav. "Synthesis and Characterization of CuO-TiO2 Core Shell Nanocomposites for Hydrogen Generation Via Photoelectrochemical Splitting of Water". W Physics of Semiconductor Devices, 729–32. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_188.
Pełny tekst źródłaPatil, Padmashri. "Thermal Sintering Improves the Short Circuit Current of Solar Cells Sensitized with CdTe/CdSe Core/Shell Nanocrystals". W Physics of Semiconductor Devices, 343–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_86.
Pełny tekst źródłaNagar, Rupali, i Bhaghavathi P. Vinayan. "Metal-semiconductor core–shell nanomaterials for energy applications". W Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications, 99–132. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-323-44922-9.00005-3.
Pełny tekst źródłaNayak, Manoj K., Jaswant Singh, Baljit Singh, Shilpa Soni, Vidhu S. Pandey i Sachin Tyagi. "Introduction to semiconductor nanomaterial and its optical and electronics properties". W Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications, 1–33. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-323-44922-9.00001-6.
Pełny tekst źródłaStreszczenia konferencji na temat "Semiconductor-Semiconductor Core Shell Nanomaterials"
Kang, Ki Moon, Hyo-Won Kim, Il-Wun Shim i Ho-Young Kwak. "Syntheses of Specialty Nanomaterials at the Multibubble Sonoluminescence Condition". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68320.
Pełny tekst źródłaLepsa, Mihail Ion, Gunjan Nagda, Pujitha Perla, Nataliya Demarina i Detlev Grutzmacher. "InAs/GaSb Core-Shell Nanowires: Growth and Characterization". W 2019 Compound Semiconductor Week (CSW). IEEE, 2019. http://dx.doi.org/10.1109/iciprm.2019.8819061.
Pełny tekst źródłaFust, Sergej, Jonathan Becker, Damon James Carrad, Dominik Irber, Jakob Seidl, Anton Faustmann, Bernhard Loitsch, Gerhard Abstreiter, Jonathan James Finley i Gregor Koblmueller. "Thermoelectric Transport in GaAs-AIGaAs Core-Shell Modulation-Doped Nanowires". W 2019 Compound Semiconductor Week (CSW). IEEE, 2019. http://dx.doi.org/10.1109/iciprm.2019.8819095.
Pełny tekst źródłaLiborius, Lisa, Jan Bieniek, Andreas Nagelein, Franz-Josef Tegude, Artur Poloczek i Nils Weimann. "n-doped InGaP Nanowire Shells in Core-Shell pn-junctions". W 2019 Compound Semiconductor Week (CSW). IEEE, 2019. http://dx.doi.org/10.1109/iciprm.2019.8819134.
Pełny tekst źródłaRaj, Vidur, Kaushal Vora, Lily Li, Lan Fu, Hark Hoe Tan i Chennupati Jagadish. "Electron selective contact for high efficiency core-shell nanowire solar cell". W 2019 Compound Semiconductor Week (CSW). IEEE, 2019. http://dx.doi.org/10.1109/iciprm.2019.8819194.
Pełny tekst źródłaDing, K., R. B. Liu, H. Wang, M. T. Hill, R. Notzel, M. K. Smit i C. Z. Ning. "Semiconductor-metal core-shell plasmonic nanolasers: Recent experimental results". W 2010 IEEE Photonics Society Winter Topicals Meeting. IEEE, 2010. http://dx.doi.org/10.1109/photwtm.2010.5421947.
Pełny tekst źródłaPavlichenko, Ivan A. "Plasmon resonances of spherical semiconductor-metal core-shell nanostructure". W 2022 Days on Diffraction (DD). IEEE, 2022. http://dx.doi.org/10.1109/dd55230.2022.9961018.
Pełny tekst źródłaZellekens, P., R. Deacon, S. Schlor, P. Perla, P. Liebisch, B. Bennemann, M. Lepsa i in. "Towards semiconductor-superconductor hybrid qubits based on InAs/Al core/shell nanowires". W 2019 Compound Semiconductor Week (CSW). IEEE, 2019. http://dx.doi.org/10.1109/iciprm.2019.8819062.
Pełny tekst źródłaDeppner, Marcus, Friedhard Romer, Bernd Witzigmann, Johannes Ledig, Richard Neumann, Andreas Waag, Werner Bergbauer i Martin Strassburg. "Computational study of carrier injection in III-nitride core-shell nanowire-LEDs". W 2011 Semiconductor Conference Dresden (SCD). IEEE, 2011. http://dx.doi.org/10.1109/scd.2011.6068745.
Pełny tekst źródłaNovak, J., M. Mikulics, P. Elias, S. Hasenohrl, A. Dujavova-Laurencikova, I. Vavra, I. Novotny i J. Kovac. "Photoluminescence of single GaP/ZnO core-shell nanowires". W 2012 International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM). IEEE, 2012. http://dx.doi.org/10.1109/asdam.2012.6418584.
Pełny tekst źródła