Gotowa bibliografia na temat „Semiconductor Nanoparticles/Quantum Dots”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Semiconductor Nanoparticles/Quantum Dots”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Semiconductor Nanoparticles/Quantum Dots"
Himadri, D., D. Pranayee i S. Kandarpa Kumar. "Synthesis of PbS Nanoparticles and Its Potential as a Biosensor based on Memristic Properties". Volume 4,Issue 5,2018 4, nr 5 (14.09.2018): 500–502. http://dx.doi.org/10.30799/jnst.147.18040510.
Pełny tekst źródłaBarachevsky, V. A. "Photochromic quantum dots". Izvestiya vysshikh uchebnykh zavedenii. Fizika, nr 11 (2021): 30–44. http://dx.doi.org/10.17223/00213411/64/11/30.
Pełny tekst źródłaYuan, Dekai, Ping Wang, Liju Yang, Jesse L. Quimby i Ya-Ping Sun. "Carbon “quantum” dots for bioapplications". Experimental Biology and Medicine 247, nr 4 (3.12.2021): 300–309. http://dx.doi.org/10.1177/15353702211057513.
Pełny tekst źródłaLin, Cheng-An J., Tim Liedl, Ralph A. Sperling, María T. Fernández-Argüelles, Jose M. Costa-Fernández, Rosario Pereiro, Alfredo Sanz-Medel, Walter H. Chang i Wolfgang J. Parak. "Bioanalytics and biolabeling with semiconductor nanoparticles (quantum dots)". J. Mater. Chem. 17, nr 14 (2007): 1343–46. http://dx.doi.org/10.1039/b618902d.
Pełny tekst źródłaBertino, M. F., R. R. Gadipalli, J. G. Story, C. G. Williams, G. Zhang, C. Sotiriou-Leventis, A. T. Tokuhiro, S. Guha i N. Leventis. "Laser writing of semiconductor nanoparticles and quantum dots". Applied Physics Letters 85, nr 24 (13.12.2004): 6007–9. http://dx.doi.org/10.1063/1.1836000.
Pełny tekst źródłaDoskaliuk, Natalia, Yuliana Lukan i Yuriy Khalavka. "Quantum dots for temperature sensing". Scientiae Radices 2, nr 1 (23.03.2023): 69–87. http://dx.doi.org/10.58332/scirad2023v2i1a04.
Pełny tekst źródłaDoskaliuk, Natalia, Yuliana Lukan i Yuriy Khalavka. "Quantum dots for temperature sensing." Scientiae Radices 2, nr 2 (19.04.2023): 93–111. http://dx.doi.org/10.58332/scirad2023v2i2a01.
Pełny tekst źródłaMAHMOOD, Iram, Ishfaq AHMAD, Ishaq AHMAD i Ting-kai ZHAO. "Photodegradation of Melamine Using Magnetic Silicon Quantum Dots". Materials Science 27, nr 2 (5.05.2021): 127–32. http://dx.doi.org/10.5755/j02.ms.22688.
Pełny tekst źródłaКосарев, А. Н., В. В. Чалдышев, А. А. Кондиков, Т. А. Вартанян, Н. А. Торопов, И. А. Гладских, П. В. Гладских i in. "Эпитаксиальные квантовые точки InGaAs в матрице Al-=SUB=-0.29-=/SUB=-Ga-=SUB=-0.71-=/SUB=-As: интенсивность и кинетика люминесценции в ближнем поле серебряных наночастиц". Журнал технической физики 126, nr 5 (2019): 573. http://dx.doi.org/10.21883/os.2019.05.47655.382-18.
Pełny tekst źródłaJooken, Stijn, Yovan de Coene, Olivier Deschaume, Dániel Zámbó, Tangi Aubert, Zeger Hens, Dirk Dorfs i in. "Enhanced electric field sensitivity of quantum dot/rod two-photon fluorescence and its relevance for cell transmembrane voltage imaging". Nanophotonics 10, nr 9 (21.05.2021): 2407–20. http://dx.doi.org/10.1515/nanoph-2021-0077.
Pełny tekst źródłaRozprawy doktorskie na temat "Semiconductor Nanoparticles/Quantum Dots"
Poppe, Jan. "Spectroelectrochemical Investigations of Semiconductor Nanoparticles". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-162122.
Pełny tekst źródłaMatas, Adams Alba Maria. "Semiconductor Nanoparticles as Platform for Bio-Applications and Energy Related Systems". Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/334391.
Pełny tekst źródłaEsta tesis esta dedicada a la sintesis, caracterizacion y aplicaciones de diferentes nanomateriales que presentan la propiedad de ser semiconductores. Esta dividida en tres bloques, en los cuales, en el primer de ellos se habla sobre quantum dots (QDs), que son nanoparticulas fluorescentes cuya longitud de onda de emision varia con el tamaño. Dichos materiales se estan usando ultimamente como sustitutos de los colorantes organicos ya que presentan ventajas, la principal es que no pierden su emision con el tiempo. Estos QDs han sido usados para estudiar su interaccion con el oro (que aumenta su intensidad de fluorescencia), han sido encapsulados usando polimeros para usarlos como controles en citometria de flujo y por silica para usarlos (una vez unidos a un peptido y un colorante organico adecuado) como detectores de fibrosis quistica. Finalmente tambien han sido usados en esta tesis para intentar seguir el movimiento de un receptor en plaquetas. En el segundo bloque de la tesis se habla de up conversion nanoparticles, cuya diferencia frente a los QDs es que se excitan a mayor longitud de onda a la que emiten, por lo que son capaces de absorber en el infrarojo y emitir en el visible, haciendolos ideales para aplicaciones en biologia. En esta tesis se usaron para reconocer un receptor en neutrofilos y para introducirlo dentro de hidrotalcitas (material que no es reconocido por el cuerpo como extraño) para asi poder liberarlo en el organismo. Finalmente, en el tercer bloque se han sintetizado materiales para catalisis (sulfuro de bismuto) y para celdas solares (oxido de titanio).
This thesis is dedicated to the synthesis, characterization and application of different nanomaterials that are semiconductors. It is divided in three blocks, in the first one we talk about quantum dots (QDs), that are fluorescent nanoparticles whose wavelength of emission changes with size. Such materials are being used as substitutes of organic dyes, due to the many advantages they present, the main one is that the fluorescence is not lost with time. These QDs have been used to study their interaction with gold ( that increases the fluorescence intensity), they have been encapsulated with polimers to be used as controls in flow cytometry or by silica to use them as sensors for cystic fibrosis (once they have been attatched to the right polymer and dye). Finally, in this thesis, they have been also used to track the movement of a platelet receptor. In the second block we talk about up conversion nanoparticles, which only difference regarding QDs is that they are excited using a longer wavelength than the emission, so they are able to absorb in the infrared and emit in the visible range of light, making them ideal for biological applications. We have use this materials to recognice an specific receptor in neutrophils as well as to be surrounded by hydrotalcite (body friendly material) so it can be released in the organism. Finally, in the third block we have syntesized materials for catalysis (bismuth sulfide) and for solar cells (titanium oxide for perovskite solar cells).
Dooley, Chad Johnathan. "New Nanomaterials for Photovoltaic Applications: A Study on the Chemistry and Photophysics of II-VI Semiconductor Nanostructures". Thesis, Boston College, 2009. http://hdl.handle.net/2345/705.
Pełny tekst źródłaThis dissertation examines the chemistry and photophysics of semiconductor quantum dots with the intent of studying their capabilities and limitations as they pertain to photovoltaic technologies. Specifically, experiments are presented detailing the first time-resolved measurements of electron transfer in electronically coupled quantum rods. Electron transfer from the conduction band of CdTe was measured to occur on the 400 fs timescale (kET = 2.5 x 1012 s-1), more than 500x faster than previously believed. Additionally, the direct optical promotion of an electron from the valence band of CdTe was observed, occurring on the timescale of the pump pulse (~50 fs). Based on the determined injection rates, a carrier separation efficiency of > 90% has been calculated suggesting these materials are sufficient for use in solar energy capture applications where efficient carrier separation is critical. To this end, model photovoltaic cells were fabricated, and their power conversion efficiency and photon-to-current generation efficiency characterized. In devices based of CdSe and heteromaterial quantum rods we observed fill-factors on the order of 10-20% though with power conversion efficiencies of < 0.02%. It was discovered that using a high temperature annealing step, while critical to get electrochemically stable photoelectrodes, was detrimental to quantum confinement effects and likely removed any hQR specific capabilities. Additionally, a detailed study on the role of nucleotide triphosphate chemistry in stabilizing emissive CdS nanoparticles is presented. Specifically it was observed that in a neutral pH environment, GTP selectively stabilizes CdS quantum dots with diameters of ~4 nm while the other naturally occurring ribonucleotides do not yield emissive product. The selectivity is dependent on the presence of the nucleophilic N-7 electrons near a triphosphate pocket for Cd2+ complexation as well as an exocyclic amine to stabilize the resulting product particles. However, in an elevated pH environment, the nucleobase specificity is relaxed and all NTPs yield photo-emissive quantum dots with PLQEs as high as 10%
Thesis (PhD) — Boston College, 2009
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Hellström, Staffan. "Exciton-plasmon interactions in metal-semiconductor nanostructures". Doctoral thesis, KTH, Teoretisk kemi och biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93306.
Pełny tekst źródłaQC 20120417
Jiang, Feng. "Ligand Controlled Growth of Aqueous II-VI Semiconductor Nanoparticles and Their Self-Assembly". Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/311311.
Pełny tekst źródłaRazgoniaeva, Natalia Razgoniaeva. "Photochemical energy conversion in metal-semiconductor hybrid nanocrystals". Bowling Green State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1465822519.
Pełny tekst źródłaFairclough, Simon Michael. "Carrier dynamics within semiconductor nanocrystals". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:857f624d-d93d-498d-910b-73cce12c4e0b.
Pełny tekst źródłaSchill, Alexander Wilhem. "Interesting Electronic and Dynamic Properties of Quantum Dot Quantum Wells and other Semiconductor Nanocrystal Heterostructures". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11514.
Pełny tekst źródłaKairdolf, Brad A. "Development of polymer-coated nanoparticle imaging agents for diagnostic applications". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31845.
Pełny tekst źródłaCommittee Chair: Nie, Shuming; Committee Member: Bao, Gang; Committee Member: Murthy, Niren; Committee Member: Varma, Vijay; Committee Member: Wang, Zhong Lin. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Zedan, Abdallah. "GRAPHENE-BASED SEMICONDUCTOR AND METALLIC NANOSTRUCTURED MATERIALS". VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/457.
Pełny tekst źródłaKsiążki na temat "Semiconductor Nanoparticles/Quantum Dots"
Masumoto, Yasuaki, i Toshihide Takagahara, red. Semiconductor Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05001-9.
Pełny tekst źródłaW, Koch S., red. Semiconductor quantum dots. Singapore: World Scientific, 1993.
Znajdź pełny tekst źródłaRogach, Andrey L., red. Semiconductor Nanocrystal Quantum Dots. Vienna: Springer Vienna, 2008. http://dx.doi.org/10.1007/978-3-211-75237-1.
Pełny tekst źródłaMichler, Peter, red. Single Semiconductor Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-87446-1.
Pełny tekst źródłaCredi, Alberto, red. Photoactive Semiconductor Nanocrystal Quantum Dots. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51192-4.
Pełny tekst źródłaOptical properties of semiconductor quantum dots. Berlin: Springer, 1997.
Znajdź pełny tekst źródłaW, Wise Frank, red. Selected papers on semiconductor quantum dots. Bellingham, Wash: SPIE Press, 2005.
Znajdź pełny tekst źródłaI, Klimov Victor, red. Nanocrystal quantum dots. Wyd. 2. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaKlimov, Victor I. Nanocrystal quantum dots. Wyd. 2. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródła1948-, Masumoto Y., i Takagahara T. 1950-, red. Semiconductor quantum dots: Physics, spectroscopy, and applications. Berlin: Springer, 2002.
Znajdź pełny tekst źródłaCzęści książek na temat "Semiconductor Nanoparticles/Quantum Dots"
Freeman, Ronit, Jian-Ping Xu i Itamar Willner. "Semiconductor Quantum Dots for Analytical and Bioanalytical Applications". W Nanoparticles, 455–511. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631544.ch6.
Pełny tekst źródłaEscudero, Alberto, Carolina Carrillo-Carrión, Mikhail V. Zyuzin i Wolfgang J. Parak. "Luminescent Rare-earth-based Nanoparticles: A Summarized Overview of their Synthesis, Functionalization, and Applications". W Photoactive Semiconductor Nanocrystal Quantum Dots, 107–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51192-4_5.
Pełny tekst źródłaAbdullah, M., Farah T. Mohammed Noori i Amin H. Al-Khursan. "Second-Order Nonlinear Susceptibility in Quantum Dot Structures". W Semiconductor Nanocrystals and Metal Nanoparticles, 307–41. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315374628-10.
Pełny tekst źródłaEven, Jacky, Cheng Wang i Frédéric Grillot. "From Basic Physical Properties of InAs/InP Quantum Dots to State-of-the-Art Lasers for 1.55 µm Optical Communications". W Semiconductor Nanocrystals and Metal Nanoparticles, 95–125. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315374628-4.
Pełny tekst źródłaGolan, Y., L. Margulis, B. Alperson, I. Rubinstein, G. Hodes i J. L. Hutchison. "The Role of Semiconductor/Substrate Mismatch in the Formation of Electrodeposited Quantum Dots". W Nanoparticles in Solids and Solutions, 167–74. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8771-6_9.
Pełny tekst źródłaTorres-Torres, Carlos, i Geselle García-Beltrán. "Study on Second- and Third-Order Nonlinear Optical Properties in Semiconductor Nanoparticles and Quantum Dots". W Optical Nonlinearities in Nanostructured Systems, 109–23. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10824-2_5.
Pełny tekst źródłaBailes, Julian, i Mikhail Soloviev. "The Application of Semiconductor Quantum Dots for Enhancing Peptide Desorption, Improving Peak Resolution and Sensitivity of Detection in Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry". W Nanoparticles in Biology and Medicine, 211–17. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-953-2_16.
Pełny tekst źródłaParak, Wolfgang Johann, Liberato Manna, Friedrich C. Simmel, Daniele Gerion i Paul Alivisatos. "Quantum Dots". W Nanoparticles, 3–47. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631544.ch2.
Pełny tekst źródłaOwschimikow, N., B. Herzog, B. Lingnau, K. Lüdge, A. Lenz, H. Eisele, M. Dähne i in. "Submonolayer Quantum Dots". W Semiconductor Nanophotonics, 13–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35656-9_2.
Pełny tekst źródłaAl-Douri, Yarub. "Semiconductor Quantum Dots". W Nanomaterials, 149–68. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3881-8_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Semiconductor Nanoparticles/Quantum Dots"
Ozel, Tuncay, Sedat Nizamoglu, Mustafa A. Sefunc, Olga Samarskaya, Ilkem O. Ozel, Evren Mutlugun, Vladimir Lesnyak i in. "Observation of anisotropic emission from semiconductor quantum dots in nanocomposites of metal nanoparticles". W 2010 23rd Annual Meeting of the IEEE Photonics Society (Formerly LEOS Annual Meeting). IEEE, 2010. http://dx.doi.org/10.1109/photonics.2010.5698799.
Pełny tekst źródłaKudo, Tetsuhiro, Shang-Jan Yang i Hiroshi Masuhara. "Dynamically swarming gold nanoparticles formed by laser trapping at glass/solution interface". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2018. http://dx.doi.org/10.1364/jsap.2018.18a_211b_3.
Pełny tekst źródłaWang, L., D. Ankuciwiez, J. Y. Chen i R. K. Jain. "Enhancement of Two-Photon Absorption-Induced Florescence in Semiconductor Quantum Dots by Gold Nanoparticles". W Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/nlo.2009.nme4.
Pełny tekst źródłaPark, Inkyu, Seung H. Ko, Heng Pan, Albert P. Pisano i Costas P. Grigoropoulos. "Micro/Nanoscale Structure Fabrication by Direct Nanoimprinting of Metallic and Semiconducting Nanoparticles". W ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43878.
Pełny tekst źródłaAgrawal, Amit, Xiaohu Gao, Nitin Nitin, Gang Bao i Shuming Nie. "Quantum Dots and FRET-Nanobeads for Probing Genes, Proteins, and Drug Targets in Single Cells". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43598.
Pełny tekst źródłaToropov, Nikita A., Aisylu N. Kamalieva, Kristina M. Rizvanova, Roman O. Volkov, Maxim G. Gushchin i Tigran A. Vartanyan. "Resonant and non-resonant interaction of semiconductor quantum dots with plasmons localized in silver and zinc nanoparticles". W Nonlinear Optics and Applications, redaktorzy Mario Bertolotti i Alexei M. Zheltikov. SPIE, 2019. http://dx.doi.org/10.1117/12.2520650.
Pełny tekst źródłaNguyen, Ha Trang, Sung Jin Kim i Ju-Hyung Yun. "Engineering of multi-photoluminescence properties for hybrid structure of metal nanoparticles/semiconductor quantum dots for bio-imaging applications". W Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIX, redaktorzy Dror Fixler, Sebastian Wachsmann-Hogiu i Ewa M. Goldys. SPIE, 2022. http://dx.doi.org/10.1117/12.2608170.
Pełny tekst źródłaKulah, Jonathan, i Ahmet Aykaç. "Synthesis and Characterization of Silver Quantum Dots from Moringa Oleifera Leaves & Seeds Extracts". W 6th International Students Science Congress. Izmir International Guest Student Association, 2022. http://dx.doi.org/10.52460/issc.2022.049.
Pełny tekst źródłaKandlakunta, Sahithi, i Mahesh Panchagnula. "Laser Induced Fluorometry and Velocimetry". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14980.
Pełny tekst źródłaStella, A., M. Nisoli, S. De Silvestri, O. Svelto, G. Lanzani, P. Cheyssac i R. Kofman. "Confinement Effects on the Electron Thermalization Process in Tin Nanocrystals". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.fe.48.
Pełny tekst źródłaRaporty organizacyjne na temat "Semiconductor Nanoparticles/Quantum Dots"
Steel, Duncan G. Development and Application of Semiconductor Quantum Dots to Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, marzec 2002. http://dx.doi.org/10.21236/ada413562.
Pełny tekst źródłaNielsen, Erik, Xujiao Gao, Irina Kalashnikova, Richard Partain Muller, Andrew Gerhard Salinger i Ralph Watson Young. QCAD simulation and optimization of semiconductor double quantum dots. Office of Scientific and Technical Information (OSTI), grudzień 2013. http://dx.doi.org/10.2172/1204068.
Pełny tekst źródłaRicken, James Bryce, Lynette Rios, Jens Fredrich Poschet, Marlene Bachand, George David Bachand, Adrienne Celeste Greene i Amanda Carroll-Portillo. Toxicological studies of semiconductor quantum dots on immune cells. Office of Scientific and Technical Information (OSTI), listopad 2008. http://dx.doi.org/10.2172/945919.
Pełny tekst źródłaCundiff, Steven T. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots. Office of Scientific and Technical Information (OSTI), maj 2016. http://dx.doi.org/10.2172/1250541.
Pełny tekst źródłaScholtes, Kevin T., Christopher B. Jacobs, Eric S. Muckley, Patrick M. Caveney i Ilia N. Ivanov. Scalable processing of ZnS nanoparticles for high photoluminescence efficiency quantum dots. Office of Scientific and Technical Information (OSTI), listopad 2018. http://dx.doi.org/10.2172/1482456.
Pełny tekst źródłaBandyopadhyay, Supriyo, Hadis Morkoc, Alison Baski i Shiv Khanna. Self Assembled Semiconductor Quantum Dots for Spin Based All Optical and Electronic Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2008. http://dx.doi.org/10.21236/ada483818.
Pełny tekst źródłaNarayanamurti, Venkatesh. Ballistic Electron Emission Spectroscopy Study of Transport through Semiconductor Quantum Wells and Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1997. http://dx.doi.org/10.21236/ada329782.
Pełny tekst źródłaCundiff, Steven. Final Report for Optical Two-Dimensional Spectroscopy of Semiconductor Quantum Wells and Quantum Dots. Office of Scientific and Technical Information (OSTI), grudzień 2019. http://dx.doi.org/10.2172/1577852.
Pełny tekst źródłaPaiella, Roberto, i Theodore D. Moustakas. Plasmonic Control of Radiation and Absorption Processes in Semiconductor Quantum Dots. Office of Scientific and Technical Information (OSTI), lipiec 2017. http://dx.doi.org/10.2172/1373285.
Pełny tekst źródłaSteel, Duncan G. Time Resolved Nano-Optical Spectroscopy of Coherently Excited Semiconductor Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, październik 2000. http://dx.doi.org/10.21236/ada386872.
Pełny tekst źródła