Gotowa bibliografia na temat „Semiconducting Quantum Materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Semiconducting Quantum Materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Semiconducting Quantum Materials"
Zhang, Dao Hua. "Semiconducting Materials for Photonic Technology". Materials Science Forum 859 (maj 2016): 96–103. http://dx.doi.org/10.4028/www.scientific.net/msf.859.96.
Pełny tekst źródłaCocchi, Caterina, i Holger-Dietrich Saßnick. "Ab Initio Quantum-Mechanical Predictions of Semiconducting Photocathode Materials". Micromachines 12, nr 9 (24.08.2021): 1002. http://dx.doi.org/10.3390/mi12091002.
Pełny tekst źródłaBanerjee, Pritam, Chiranjit Roy, Juan Jesús Jiménez, Francisco Miguel Morales i Somnath Bhattacharyya. "Atomically resolved 3D structural reconstruction of small quantum dots". Nanoscale 13, nr 16 (2021): 7550–57. http://dx.doi.org/10.1039/d1nr00466b.
Pełny tekst źródłaZentel, Rudolf. "Polymer Coated Semiconducting Nanoparticles for Hybrid Materials". Inorganics 8, nr 3 (11.03.2020): 20. http://dx.doi.org/10.3390/inorganics8030020.
Pełny tekst źródłaMokkath, Junais Habeeb. "Dopant-induced localized light absorption in CsPbX3 (X = Cl, Br, I) perovskite quantum dots". New Journal of Chemistry 43, nr 46 (2019): 18268–76. http://dx.doi.org/10.1039/c9nj03784e.
Pełny tekst źródłaReichardt, Sven, i Ludger Wirtz. "Nonadiabatic exciton-phonon coupling in Raman spectroscopy of layered materials". Science Advances 6, nr 32 (sierpień 2020): eabb5915. http://dx.doi.org/10.1126/sciadv.abb5915.
Pełny tekst źródłaLiang, Shuang, Ze Ma, Nan Wei, Huaping Liu, Sheng Wang i Lian-Mao Peng. "Solid state carbon nanotube device for controllable trion electroluminescence emission". Nanoscale 8, nr 12 (2016): 6761–69. http://dx.doi.org/10.1039/c5nr07468a.
Pełny tekst źródłaBanks, Peter A., Jefferson Maul, Mark T. Mancini, Adam C. Whalley, Alessandro Erba i Michael T. Ruggiero. "Thermoelasticity in organic semiconductors determined with terahertz spectroscopy and quantum quasi-harmonic simulations". Journal of Materials Chemistry C 8, nr 31 (2020): 10917–25. http://dx.doi.org/10.1039/d0tc01676d.
Pełny tekst źródłaFeng, Hao-Lin, Wu-Qiang Wu, Hua-Shang Rao, Long-Bin Li, Dai-Bin Kuang i Cheng-Yong Su. "Three-dimensional hyperbranched TiO2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells". Journal of Materials Chemistry A 3, nr 28 (2015): 14826–32. http://dx.doi.org/10.1039/c5ta02269j.
Pełny tekst źródłaKIM, Jaewook. "Advances in Floating Zone Crystal Growth". Physics and High Technology 31, nr 9 (30.09.2022): 22–25. http://dx.doi.org/10.3938/phit.31.030.
Pełny tekst źródłaRozprawy doktorskie na temat "Semiconducting Quantum Materials"
Flatten, Lucas Christoph. "Quantum electrodynamics of semiconducting nanomaterials in optical microcavities". Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:a5f4797f-ea23-49e4-bd1e-2483154508d6.
Pełny tekst źródłaBandyopadhyay, Avra Sankar. "Light Matter Interactions in Two-Dimensional Semiconducting Tungsten Diselenide for Next Generation Quantum-Based Optoelectronic Devices". Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1752376/.
Pełny tekst źródłaZhang, Yu. "Fabrication, structural and spectroscopic studies of wide bandgap semiconducting nanoparticles of ZnO for application as white light emitting diodes". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI046.
Pełny tekst źródłaThe present thesis studies ZnO nanoparticles embedded in a mesospheric polyacrylic acid (PAA) matrix synthesized via a hydrolysis protocol. The mesospheric ZnO/PAA hybrid structure was previously proved efficient in emitting visible light in a broad range, which results from the deep-level intrinsic defects in ZnO nanocrystals. To further tune the photoluminescence (PL) spectrum and improve the PL quantum yield (PL QY) of the material, metal-doped ZnO and silica-coated ZnO/PAA are fabricated independently. For ZnO doped with metallic elements, the nature, concentration, size and valence of the dopant are found to affect the formation of the mesospheres and consequently the PL and PL QY. Ions larger than Zn2+ with a higher valence tend to induce larger mesospheres and unembedded ZnO nanoparticles. Doping generally leads to the quenching of PL, but the PL spectrum can still be tuned in a wide range (between 2.46 eV and 2.17 eV) without degrading the PL QY by doping small ions at a low doping concentration (0.1 %). For silica-coated ZnO/PAA, an optimal coating correlatively depends on the amount of TEOS and ammonia in the coating process. The amount of TEOS does not affect the crystal structure of ZnO or the PL spectrum of the material, but high concentration of ammonia can degrade the PAA mesospheres and thicken the silica shell. A thin layer of silica that does not absorb too much excitation light but completely covers the mesospheres proves to be the most efficient, with a drastic PL QY improvement of six times. Regarding the application, the materials suffer from thermal quenching at temperatures high up to 100°C, at which white light emitting diodes (WLEDs) generally operates. However, silica-coated ZnO/PAA induces higher emission intensity at room temperature to make up for the thermal quenching
Παππάς, Σπυρίδων. "Ανάπτυξη και χαρακτηρισμός προηγμένων υλικών για νανοδιατάξεις". Thesis, 2013. http://hdl.handle.net/10889/6374.
Pełny tekst źródłaThe objective of this Thesis is the growth and the characterization of high tech materials which can be possible candidates for future applications in nanodevices. In the framework of the Thesis, we were mainly focused on the production and the study of magnetic and semiconducting thin films, which are based on oxides of metals and of conventional semiconductors. The magnetic and optical characterizations reveal that these materials, in the form of thin films exhibit new properties with exceptionally large technological interest. In more detail, magnetic Ni/NiO multilayers, semiconducting Cu2O, CuO and NiO thin films, as well as insulating amorphous SiOx thin films with or without embedded Si quantum dots, were produced. The magnetic and/or optical properties of each of the aforementioned thin film categories were studied and their impact on possible future applications was examined. The Ni/NiO multilayers were produced on various substrates with the aid of a single magnetron sputtering head and the natural oxidation process. The produced multilayers were of excellent layering and interface quality. An extended study of both the magnetization and the anisotropy as a function of the temperature and the varying Ni layer thickness was performed. It is found from the magnetic investigations, that the multilayers with thin Ni layers exhibit a trend for perpendicular magnetic anisotropy, which is attributed to the considerable positive surface anisotropy of the Ni/NiO interfaces. The semiconducting copper and nickel oxide thin films were produced via the oxidation of the corresponding metallic films. The amorphous SiOx films were fabricated via the reactive sputtering method. Part of the as deposited films was fully oxidized at 950 oC under the ambient air environment, whereas another part was thermally decomposed under vacuum conditions at 1000 oC. Electron microscopy investigations reveal that upon the thermal decomposition process of the films, embedded Si nanocrystals are formed in the amorphous matrix of the Si oxide. The Cu and Ni oxide films exhibited quantum confinement effects, which were studied via the UV-VIS spectroscopy. The recorded spectra reveal that the absorption edge shifts towards higher energies, as the layer thickness is reduced and becomes comparable with the excitonic Bohr radius of the material. The Si oxide thin films, after the thermal decomposition treatment are found to exhibit photoluminescence at the region between 1.3 and 1.5 eV which is originated to the excitonic recombination in the embedded Si quantum dots. Finally, it is deduced that conventional materials like metals, semiconductors and the oxides of them, can exhibit new properties when they are prepared in the form of nanostructure. These nanostructures can attract a lot of interest for possible applications in nanodevices with new but completely controllable properties.
Książki na temat "Semiconducting Quantum Materials"
G, Snyder Paul, i United States. National Aeronautics and Space Administration., red. Materials, structures, and devices for high-speed electronics: Final report, grant period, January 1, 1981 - December 31, 1992. [Washington, DC: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaG, Snyder Paul, i United States. National Aeronautics and Space Administration., red. Materials, structures, and devices for high-speed electronics: Final report, grant period, January 1, 1981 - December 31, 1992. [Washington, DC: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaPanigrahi, Muktikanta, i Arpan Kumar Nayak. Polyaniline based Composite for Gas Sensors. IOR PRESS, 2021. http://dx.doi.org/10.34256/ioriip212.
Pełny tekst źródłaCzęści książek na temat "Semiconducting Quantum Materials"
Pattanayak, Dillip Kumar, Arun Kumar Padhy, Lokesh Kumar Prusty, Ranjan Kumar Bhuyna i Samita Pattanayak. "Hidden Treasures of Semiconducting Materials for Quantum Computing". W Advances in Systems Analysis, Software Engineering, and High Performance Computing, 132–53. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9183-3.ch009.
Pełny tekst źródła"Self-organized and quantum domain structures". W Microscopy of Semiconducting Materials, 115–78. CRC Press, 2000. http://dx.doi.org/10.1201/9781482268690-8.
Pełny tekst źródła"Quantum Dots: Properties and Applications". W Materials Research Foundations, 331–48. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901250-13.
Pełny tekst źródłaCockayne, D. J. H., X. Z. Liao i J. Zou. "The morphology and composition of quantum dots". W Microscopy of Semiconducting Materials 2001, 77–83. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-17.
Pełny tekst źródłaShen, H., i F. H. Pollak. "Quantum Wells". W Concise Encyclopedia of Semiconducting Materials & Related Technologies, 385–88. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-08-034724-0.50093-7.
Pełny tekst źródłaErnst, F., O. Kienzle, O. G. Schmidt, K. Eberl, J. Zhu, K. Brunner i G. Abstreiter. "Ge-Si Nanostructures for Quantum-Effect Electronic Devices". W Microscopy of Semiconducting Materials 2001, 167–76. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-35.
Pełny tekst źródłaMigliorato, M. A., A. G. Cullis, M. Fearn i J. H. Jefferson. "Atomistic modelling of strain relaxation effects in quantum dots". W Microscopy of Semiconducting Materials 2001, 97–100. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-21.
Pełny tekst źródłaKeast, V. J., N. Sharma i C. J. Humphreys. "Energy-loss spectroscopy of GaN alloys and quantum wells". W Microscopy of Semiconducting Materials 2001, 259–62. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-54.
Pełny tekst źródłaZhi, D., D. W. Pashley, B. A. Joyce i T. S. Jones. "The structure of uncapped and capped InAs/GaAs quantum dots". W Microscopy of Semiconducting Materials 2001, 89–92. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-19.
Pełny tekst źródłaLeifer, K., B. Dwir, Y. Ducommun, D. Y. Oberli i E. Kapon. "Localisation and transport in quantum wires with longitudinal bandgap variation". W Microscopy of Semiconducting Materials 2001, 113–18. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-24.
Pełny tekst źródłaStreszczenia konferencji na temat "Semiconducting Quantum Materials"
Xiulai Xu, D. A. Williams, J. R. A. Cleaver, Debao Zhou i C. Stanley. "InAs quantum dots for quantum information processing". W 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511396.
Pełny tekst źródłaFu, L., P. Lever, P. L. Gareso, M. Buda, H. H. Tan, C. Jagadish, P. Reece i M. gal. "Impurity-free vacancy disordering of quantum wells and quantum dots for optoelectronic/photonic integrated circuits". W 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511397.
Pełny tekst źródłaLee, Kwang-Sup. "Semiconducting quantum dots with optoelectronic and photonic functions (Conference Presentation)". W Organic Photonic Materials and Devices XXI, redaktorzy Christopher E. Tabor, François Kajzar i Toshikuni Kaino. SPIE, 2019. http://dx.doi.org/10.1117/12.2514004.
Pełny tekst źródłaTsuya, Daiju, Masaki Suzuki, Yoshinobu Aoyagi i Koji Ishibashi. "Quantum dot transport of semiconducting single-wall carbon nanotubes". W 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.h-4-2.
Pełny tekst źródłaYan, B., Z. Yang, Y. Shi, J. L. Liu, R. Zhang, Y. D. Zheng i K. L. Wang. "Structural characteristics of self-assembled Ge/Si quantum dot superlattices". W 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511403.
Pełny tekst źródłaJarillo-Herrero, Pablo. "A Few Electron-Hole Semiconducting Carbon Nanotube Quantum Dot". W ELECTRIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES: XVII International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2004. http://dx.doi.org/10.1063/1.1812154.
Pełny tekst źródłaGong, Q., P. Offermans, R. Noetzel, P. M. Koenrad i J. H. Wolter. "Capping process of InAs/GaAs quantum dots grown by molecular-beam epitaxy". W 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511399.
Pełny tekst źródłaHe, J., P. Offermans, P. M. Koenrad, Q. Gong, G. J. Hamhuis, T. J. Eijekmans i J. H. Wolter. "Structural and optical properties of columnar (In,Ga)As quantum dots on GaAs (100)". W 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511400.
Pełny tekst źródłaTerashita, Y., M. Okazaki, K. Kamimura i K. Fujiwara. "Lasing wavelength of GaAs single quantum well diodes with thin AlAs carrier blocking layers". W 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511433.
Pełny tekst źródłaXu, B., Z. G. Wang, Y. H. Chen, P. Jin, X. L. Ye, H. Y. Liu, Z. Y. Zhang i in. "Controlled growth of III-V compound semiconductor nano-structures and their application in quantum-devices". W 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511398.
Pełny tekst źródła