Gotowa bibliografia na temat „Semiconducting Nanostructures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Semiconducting Nanostructures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Semiconducting Nanostructures"
Heydari Gharahcheshmeh, Meysam, i Karen K. Gleason. "Recent Progress in Conjugated Conducting and Semiconducting Polymers for Energy Devices". Energies 15, nr 10 (17.05.2022): 3661. http://dx.doi.org/10.3390/en15103661.
Pełny tekst źródłaBesombes, L., D. Ferrand, H. Mariette, J. Cibert, M. Jamet i A. Barski. "Spins in semiconducting nanostructures". International Journal of Nanotechnology 7, nr 4/5/6/7/8 (2010): 641. http://dx.doi.org/10.1504/ijnt.2010.031737.
Pełny tekst źródłaStroyuk, A. L., V. V. Shvalagin, A. E. Raevskaya, A. I. Kryukov i S. Ya Kuchmii. "Photochemical formation of semiconducting nanostructures". Theoretical and Experimental Chemistry 44, nr 4 (lipiec 2008): 205–31. http://dx.doi.org/10.1007/s11237-008-9037-6.
Pełny tekst źródłaGippius, N. A., i S. G. Tikhodeev. "Inhomogeneous strains in semiconducting nanostructures". Journal of Experimental and Theoretical Physics 88, nr 5 (maj 1999): 1045–49. http://dx.doi.org/10.1134/1.558888.
Pełny tekst źródłaFang, Xiaosheng, Linfeng Hu, Changhui Ye i Lide Zhang. "One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors". Pure and Applied Chemistry 82, nr 11 (1.08.2010): 2185–98. http://dx.doi.org/10.1351/pac-con-09-11-40.
Pełny tekst źródłaShellaiah, Muthaiah, i Kien Wen Sun. "Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing". Sensors 21, nr 2 (18.01.2021): 633. http://dx.doi.org/10.3390/s21020633.
Pełny tekst źródłaLu, Junpeng, Hongwei Liu, Xinhai Zhang i Chorng Haur Sow. "One-dimensional nanostructures of II–VI ternary alloys: synthesis, optical properties, and applications". Nanoscale 10, nr 37 (2018): 17456–76. http://dx.doi.org/10.1039/c8nr05019h.
Pełny tekst źródłaLaubscher, Katharina, i Jelena Klinovaja. "Majorana bound states in semiconducting nanostructures". Journal of Applied Physics 130, nr 8 (28.08.2021): 081101. http://dx.doi.org/10.1063/5.0055997.
Pełny tekst źródłaHaug, Rolf J. "Single-electron tunneling through semiconducting nanostructures". Electrochimica Acta 40, nr 10 (lipiec 1995): 1283–92. http://dx.doi.org/10.1016/0013-4686(95)00059-n.
Pełny tekst źródłaIjeomah, Geoffrey, Fahmi Samsuri i Mohamad Adzhar Md Zawawi. "Novel Synthesis and Promising Applications of Graphene Nanostructures". International Journal of Engineering Technology and Sciences 4, nr 2 (29.12.2017): 58–79. http://dx.doi.org/10.15282/ijets.8.2017.1.4.1079.
Pełny tekst źródłaRozprawy doktorskie na temat "Semiconducting Nanostructures"
Buccheri, Alexander. "Modelling the optical properties of semiconducting nanostructures". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:67d66b15-c5b1-4bb1-806c-6cc22d0eb482.
Pełny tekst źródłaBalakrishnan, Kaushik. "Self-assembly of organic semiconducting molecules into one-dimensional nanostructures /". Available to subscribers only, 2008. http://proquest.umi.com/pqdweb?did=1594481341&sid=10&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Pełny tekst źródłaBrewster, Megan Marie. "The interplay of structure and optical properties in individual semiconducting nanostructures". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69662.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from PDF version of thesis. Vita.
Includes bibliographical references (p. 163-174).
Semiconductor nanostructures exhibit distinct properties by virtue of nano-scale dimensionality, allowing for investigations of fundamental physics and the improvement of optoelectronic devices. Nanoscale morphological variations can drastically affect overall nanostructure properties because the investigation of nanostructure assemblies convolves nanoscale fluctuations to produce an averaged result. The investigation of individual nanostructures is thus paramount to a comprehensive analysis of nanomaterials. This thesis focuses on the study of individual GaAs, AlGaAs, and ZnO nanostructures to understand the influence of morphology on properties at the nanoscale. First, the diameter-dependent exciton-phonon coupling strengths of individual GaAs and AlGaAs nanowires were investigated by resonant micro-Raman spectroscopy near their direct bandgaps. The one-dimensional nanowire architecture was found to affect exciton lifetimes through an increase in surface state population relative to volume, resulting in Fröhlich coupling strengths stronger than any previously observed. Next, ZnO nanowire growth kinetics and mechanisms were found to evolve by altering precursor concentrations. The cathodoluminescence of nanowires grown by reaction-limited kinetics were quenched at the nanowire tips, likely due to point defects associated with the high Zn supersaturation required for reaction-limited growth. Further, cathodoluminescence was quenched in the vicinity of Au nanoparticles, which were found on nanowire sidewalls due to the transition in growth mechanism, caused by excited electron transfer from the ZnO conduction band to the Au Fermi level. Finally, ZnO nanowalls were grown by significantly increasing precursor flux and diffusion lengths over that of the ZnO nanowire growth. Nanowall growth began with the Au-assisted nucleation of nanowires, whose growth kinetics was a combination of Gibbs- Thomson-limited and diffusion-limited, followed by the domination of non-assisted film growth to form nanowalls. Nanoscale morphological variations, such as thickness variations and the presence of dislocations and Au nanoparticles, were directly correlated with nanoscale variations in optical properties. These investigations prove unequivocally that nanoscale morphological variations have profound consequences on optical properties on the nanoscale. Studies of individual nano-objects are therefore prerequisite to fully understanding, and eventually employing, these promising nanostructures.
by Megan Marie Brewster.
Ph.D.
Jones, Eric James Ph D. Massachusetts Institute of Technology. "Nanoscale quantification of stress and strain in III-V semiconducting nanostructures". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98578.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 142-149).
III-V semiconducting nanostructures present a promising platform for the realization of advanced optoelectronic devices due to their superior intrinsic materials properties including direct band gap energies that span the visible light spectrum and high carrier mobilities. Additionally, the inherently high surface-to-volume ratio of nanostructures allows for the efficient relaxation of stress enabling the realization of defect free heterostructures between highly mismatched materials. As a result, nanostructures are being investigated as a route towards the direct integration of III-V materials on silicon substrates and as platforms for the fabrication of novel heterostructures not achievable in a thin film geometry. Due to their small size, however, many of the methods used to calculate stress and strain in 2D bulk systems are no longer valid as free surface effects allow for relaxation creating more complicated stress and strain fields. These inhomogeneous strain fields could have significant impacts on both device fabrication and operation. Therefore, it will be vital to develop techniques that can accurately predict and measure the stress and strain in individual nanostructures. In this thesis, we demonstrate how the combination of advanced transmission electron microscopy (TEM) and continuum modeling techniques can provide a quantitative understanding of the complex strain fields in nanostructures with high spatial resolutions. Using techniques such as convergent beam electron diffraction, nanobeam electron diffraction, and geometric phase analysis we quantify and map the strain fields in top-down fabricated InAlN/GaN high electron mobility transistor structures and GaAs/GaAsP core-shell nanowires grown by a particle-mediated vapor-liquid-solid mechanism. By comparing our experimental results to strain fields calculated by finite element analysis, we show that these techniques can provide quantitative strain information with spatial resolutions on the order of 1 nm. Our results highlight the importance of nanoscale characterization of strain in nanostructures and point to future opportunities for strain engineering to precisely tune the behavior and operation of these highly relevant structures.
by Eric James Jones.
Ph. D.
Lefeuvre, Emmanuel. "Organized growth of semiconducting one-dimensional nanostructures in vertical porus templates for the fabrication of field effect transistors". Palaiseau, Ecole polytechnique, 2012. https://pastel.archives-ouvertes.fr/pastel-01063869.
Pełny tekst źródłaAmjadipour, Mojtaba. "Epitaxial graphene growth on 3C-SiC/Si(111): Towards semiconducting graphene". Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/122962/1/Mojtaba_Amjadi%20Pour_Thesis.pdf.
Pełny tekst źródłaBartoš, Dušan. "Nanostrukturované vrstvy polovodivých oxidů kovů v plynových senzorech". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220925.
Pełny tekst źródłaZhang, Yu. "Fabrication, structural and spectroscopic studies of wide bandgap semiconducting nanoparticles of ZnO for application as white light emitting diodes". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI046.
Pełny tekst źródłaThe present thesis studies ZnO nanoparticles embedded in a mesospheric polyacrylic acid (PAA) matrix synthesized via a hydrolysis protocol. The mesospheric ZnO/PAA hybrid structure was previously proved efficient in emitting visible light in a broad range, which results from the deep-level intrinsic defects in ZnO nanocrystals. To further tune the photoluminescence (PL) spectrum and improve the PL quantum yield (PL QY) of the material, metal-doped ZnO and silica-coated ZnO/PAA are fabricated independently. For ZnO doped with metallic elements, the nature, concentration, size and valence of the dopant are found to affect the formation of the mesospheres and consequently the PL and PL QY. Ions larger than Zn2+ with a higher valence tend to induce larger mesospheres and unembedded ZnO nanoparticles. Doping generally leads to the quenching of PL, but the PL spectrum can still be tuned in a wide range (between 2.46 eV and 2.17 eV) without degrading the PL QY by doping small ions at a low doping concentration (0.1 %). For silica-coated ZnO/PAA, an optimal coating correlatively depends on the amount of TEOS and ammonia in the coating process. The amount of TEOS does not affect the crystal structure of ZnO or the PL spectrum of the material, but high concentration of ammonia can degrade the PAA mesospheres and thicken the silica shell. A thin layer of silica that does not absorb too much excitation light but completely covers the mesospheres proves to be the most efficient, with a drastic PL QY improvement of six times. Regarding the application, the materials suffer from thermal quenching at temperatures high up to 100°C, at which white light emitting diodes (WLEDs) generally operates. However, silica-coated ZnO/PAA induces higher emission intensity at room temperature to make up for the thermal quenching
Savu, Raluca [UNESP]. "Síntese de nanofios de óxidos semicondutores para aplicações em dispositivos ópticos e eletrônicos". Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/100917.
Pełny tekst źródłaFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A presente pesquisa teve como principal objetivo a obtenção de estruturas nanométricas de óxido de índio, óxido de estanho e óxido de zinco por evaporação térmica e síntese hidrotérmica e a construção e teste de sensores de gases e de fotodetectores de ultravioleta baseados nessas nanoestruturas. Foram realizados estudos da influência dos parâmetros experimentais das duas rotas de síntese usadas sobre as morfologias e as propriedades das estruturas. Para a obtenção das camadas nanoestruturadas por evaporação térmica foi especialmente construído um forno tubular que permitiu o controle da temperatura de deposição independente da temperatura de evaporação e da distância entre a fonte de evaporação e o substrato. Esses parâmetros, pouco explorados nas pesquisas reportadas na literatura, exerceram uma grande influência sobre a morfologia e as propriedades dos nanofios obtidos. O equipamento permitiu ainda um controle preciso da composição da atmosfera e da pressão de síntese. Na síntese química em solução, a construção de um reator hidrotérmico permitiu o estudo da influência da taxa de resfriamento sobre as dimensões, cristalinidade, morfologia e propriedades das nanoestruturas. Esse estudo, o primeiro do gênero na literatura, ressaltou a importância no controle deste parâmetro para sintetizar estruturas com propriedades melhoradas. As demais variáveis estudadas foram: a concentração das soluções, as camadas catalisadoras, a temperatura e o tempo de síntese. Foram testadas duas estratégias para a obtenção dos filmes nanoestruturados: spin-coating de suspensões de nanoestruturas sobre substratos de silício oxidado ou o crescimento das mesmas, durante a síntese, sobre substratos com camadas catalisadoras de zinco. Os nanofios e as camadas funcionais foram caracterizados por Difração de Raios-X (DRX), Microscopia Eletrônica de Varredura...
The subject of this thesis covers the synthesis and growth of indium, tin and zinc oxide nanostructures by thermal evaporation and hydrothermal synthesis and the fabrication and testing of gas sensors and ultraviolet photodetectors based on these nanosized structures. For both chemical and physical routes, the influence of processing conditions over the morphology, dimensions and electrical properties of the nanowires was investigated. In order to obtain nanostructured layers by thermal evaporation a tubular furnace was specifically builti, allowed the control of the source-substrate distance and the deposition temperature independently of the evaporation one. These parameters, slightly explored in the literature, granted a big influence over the nanowires morphology and properties. Moreover, the equipment permitted the control of deposition atmosphere and pressure. The design and assembly of a hydrothermal reactor allowed studying the influence of the cooling rate over the dimension, morphology, cristallinity and, consequently, the properties of the nanostructures. This study highlighted the importance of controlling this particular parameter in the hydrothermal process, yielding nanostructured materials with enhanced properties. Variables such as solution concentration, synthesis temperature and time, surfanctants and precursors were also explored in the hydrothermal process. In order to obtain nanostructured thin films using the chemical bath deposition, two processing techniques were employed: spin-coating of powder suspensions over oxidized silicon substrates and nanostructured anisotropic growth directly from solution using zinc coated substrates. The nanowires and the functional nanostructured layers were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE - SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS)... (Complete abstract click electronic access below)
Savu, Raluca. "Síntese de nanofios de óxidos semicondutores para aplicações em dispositivos ópticos e eletrônicos /". Bauru : [s.n.], 2009. http://hdl.handle.net/11449/100917.
Pełny tekst źródłaAbstract: The subject of this thesis covers the synthesis and growth of indium, tin and zinc oxide nanostructures by thermal evaporation and hydrothermal synthesis and the fabrication and testing of gas sensors and ultraviolet photodetectors based on these nanosized structures. For both chemical and physical routes, the influence of processing conditions over the morphology, dimensions and electrical properties of the nanowires was investigated. In order to obtain nanostructured layers by thermal evaporation a tubular furnace was specifically builti, allowed the control of the source-substrate distance and the deposition temperature independently of the evaporation one. These parameters, slightly explored in the literature, granted a big influence over the nanowires morphology and properties. Moreover, the equipment permitted the control of deposition atmosphere and pressure. The design and assembly of a hydrothermal reactor allowed studying the influence of the cooling rate over the dimension, morphology, cristallinity and, consequently, the properties of the nanostructures. This study highlighted the importance of controlling this particular parameter in the hydrothermal process, yielding nanostructured materials with enhanced properties. Variables such as solution concentration, synthesis temperature and time, surfanctants and precursors were also explored in the hydrothermal process. In order to obtain nanostructured thin films using the chemical bath deposition, two processing techniques were employed: spin-coating of powder suspensions over oxidized silicon substrates and nanostructured anisotropic growth directly from solution using zinc coated substrates. The nanowires and the functional nanostructured layers were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE - SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS)... (Complete abstract click electronic access below)
Orientador: Maria Aparecida Zaghete Bertochi
Coorientador: Elson Longo
Banca: Antonio Ricardo Zanatta
Banca: Mônica Alonso Cotta
Banca: Talita Mazon Anselmo
Banca: Sidney José Lima Ribeiro
O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp
Doutor
Książki na temat "Semiconducting Nanostructures"
Banerjee, Arghya N. P-type transparent semiconducting delafossite cualo2+x thin film. New York: Nova Science Publishers, 2008.
Znajdź pełny tekst źródłaSharma, Surbhi, Neeraj Khare i Mohd Faraz. Advances in Semiconducting Nanostructures for Photoelectrochemical Water Splitting. Elsevier Science & Technology, 2023.
Znajdź pełny tekst źródłaSharma, Surbhi, Neeraj Khare i Mohd Faraz. Advances in Semiconducting Nanostructures for Photoelectrochemical Water Splitting. Elsevier Science & Technology, 2023.
Znajdź pełny tekst źródłaKong, X. Y., Y. C. Wang, X. F. Fan, G. F. Guo i L. M. Tong. Free-standing grid-like nanostructures assembled into 3D open architectures for photovoltaic devices. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.22.
Pełny tekst źródłaTuning Semiconducting and Metallic Nanostructures: Spectroscopy, Dynamics, and Self-Assembly. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaKumar, A. 1D Semiconducting Hybrid Nanostructures -Synthesis and Applications in Gas Sensing AndOptoelectronics. Wiley & Sons, Limited, John, 2022.
Znajdź pełny tekst źródłaAswal, Dinesh K., Arvind Kumar i Nirav Joshi. 1D Semiconducting Hybrid Nanostructures: Synthesis and Applications in Gas Sensing and Optoelectronics. Wiley & Sons, Incorporated, John, 2023.
Znajdź pełny tekst źródłaAswal, Dinesh K., Arvind Kumar i Nirav Joshi. 1D Semiconducting Hybrid Nanostructures: Synthesis and Applications in Gas Sensing and Optoelectronics. Wiley & Sons, Incorporated, John, 2023.
Znajdź pełny tekst źródłaAswal, Dinesh K., Arvind Kumar i Nirav Joshi. 1D Semiconducting Hybrid Nanostructures: Synthesis and Applications in Gas Sensing and Optoelectronics. Wiley & Sons, Limited, John, 2022.
Znajdź pełny tekst źródłaAhmad, Muhammad, Ravinder Dahiya, Dhayalan Shakthivel, Mohammad R. Alenezi i S. Ravi P. Silva. 1D Semiconducting Nanostructures for Flexible and Large-Area Electronics: Growth Mechanisms and Suitability. Cambridge University Press, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "Semiconducting Nanostructures"
Gao, Pu Xian, i Zhong Lin Wang. "One-dimensional Wurtzite Semiconducting Nanostructures". W Scanning Microscopy for Nanotechnology, 384–426. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-39620-0_13.
Pełny tekst źródłaBaraton, Marie-Isabelle. "Surface Chemistry and Functionalization of Semiconducting Nanosized Particles". W Nanostructures: Synthesis, Functional Properties and Applications, 427–40. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1019-1_24.
Pełny tekst źródłaBisoyi, Hari Krishna, i Quan Li. "Stimuli-Directed Alignment Control of Semiconducting Discotic Liquid Crystalline Nanostructures". W Intelligent Stimuli-Responsive Materials, 55–114. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118680469.ch3.
Pełny tekst źródłaAchalkumar, A. S., Manoj Mathews i Quan Li. "Stimuli-Directed Self-Organized One-Dimensional Organic Semiconducting Nanostructures for Optoelectronic Applications". W Functional Organic and Hybrid Nanostructured Materials, 247–305. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.ch7.
Pełny tekst źródłaWeightman, P. "The Potential of Electron Spectroscopy and Scanning Tunnelling Microscopy for the Study of Semiconducting Nanostructures". W Frontiers in Nanoscale Science of Micron/Submicron Devices, 135–44. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1778-1_12.
Pełny tekst źródłaBroens, Martín Ignacio, Wilkendry Ramos Cervantes, Andrés Matias Asenjo Collao, Diego Patricio Oyarzun, Manuel Lopez Teijelo i Omar Ezequiel Linarez Perez. "Nanostructured Semiconducting Oxide Films". W Nanostructured Multifunctional Materials Synthesis, Characterization, Applications and Computational Simulation, 50–75. First edition. | Boca Raton : CRC Press, Taylor & Francis: CRC Press, 2021. http://dx.doi.org/10.1201/9780367822194-3.
Pełny tekst źródłaWei, Yen, Meixiang Wan, Ten-Chin Wen, Tang-Kuei Chang, Gaoquan Shi, Hongxu Qi, Lei Tao, Ester Segal i Moshe Narkis. "Nanostructured Conducting Polymers for Sensor Development". W Semiconducting Polymer Composites, 489–521. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch17.
Pełny tekst źródłaKhedkar, Jayshree, Anil M. Palve i Ram K. Gupta. "Semiconducting Nanostructured Materials for Bioelectronics". W Bioelectronics, 187–201. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003263265-12.
Pełny tekst źródłaDevaki, Sudha J., i Rajaraman Ramakrishnan. "Nanostructured Semiconducting Polymer Inorganic Hybrid Composites for Opto-Electronic Applications". W Advances in Nanostructured Composites, 352–75. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018] | Series: Advances in nanostructured composites ; volume 2 | “A science publishers book.»: CRC Press, 2019. http://dx.doi.org/10.1201/9780429021718-17.
Pełny tekst źródłaPintossi, Chiara, i Luigi Sangaletti. "Semiconducting Carbon Nanotubes: Properties, Characterization and Selected Applications". W Low-Dimensional and Nanostructured Materials and Devices, 239–59. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25340-4_10.
Pełny tekst źródłaStreszczenia konferencji na temat "Semiconducting Nanostructures"
Dürkop, T. "High-Mobility Semiconducting Nanotubes". W MOLECULAR NANOSTRUCTURES: XVII International Winterschool Euroconference on Electronic Properties of Novel Materials. AIP, 2003. http://dx.doi.org/10.1063/1.1628085.
Pełny tekst źródłaFuhrer, M. S. "Ballistic transport in semiconducting carbon nanotubes". W ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XV International Winterschool/Euroconference. AIP, 2001. http://dx.doi.org/10.1063/1.1426897.
Pełny tekst źródłaXu, Fusheng, i Stephen Tse. "Flame Synthesis of Nanostructures of Semiconducting Metal Oxides". W 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-580.
Pełny tekst źródłaPeng, Bei, Ling-hua Wu, Hao-wen Luo, Wen-hong Xu i Espinosa Horacio. "Investigation of the piezoelectric properties of semiconducting nanostructures". W 2008 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2008. http://dx.doi.org/10.1109/spawda.2008.4775816.
Pełny tekst źródłaBhat, Shruti, i J. S. Bhat. "Free-carrier absorption in metal-oxide semiconducting nanostructures". W PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICS OF MATERIALS AND NANOTECHNOLOGY ICPN 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0009310.
Pełny tekst źródłaKIRKBY, K. J., M. LOURENÇO, T. M. BUTLER, K. HOMEWOOD i C. N. MCKINTY. "LIGHT EMISSION FROM SEMICONDUCTING SILICIDE NANOSTRUCTURES IN SILICON". W Reviews and Short Notes to NANOMEETING-2001. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810076_0009.
Pełny tekst źródłaMakin, V. S., R. S. Makin i I. A. Silantjeva. "Femtosecond laser-induced self-ordered nanostructures in semiconducting 4H-SiC". W 2010 10th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM). IEEE, 2010. http://dx.doi.org/10.1109/lfnm.2010.5624175.
Pełny tekst źródłaBellucci, Stefano. "Carbon Nanotubes and Semiconducting Nanostructures: Current Views and Future Perspectives". W CANEUS 2004 Conference on Micro-Nano-Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-6752.
Pełny tekst źródłaSobolewski, Roman. "Femtosecond time-domain experimental characterization of ballistic transport in semiconducting nanostructures". W 2010 IEEE Photonics Society Summer Topical Meeting Series. IEEE, 2010. http://dx.doi.org/10.1109/phosst.2010.5553708.
Pełny tekst źródłaKumar, Pradeep, Adosh Mehta, Predrag Krstic i Michael D. Barnes. "Oriented semiconducting polymer nanostructures: photon statistics and far-field dipole interactions". W Integrated Optoelectronic Devices 2005, redaktorzy Diana L. Huffaker i Pallab K. Bhattacharya. SPIE, 2005. http://dx.doi.org/10.1117/12.597143.
Pełny tekst źródłaRaporty organizacyjne na temat "Semiconducting Nanostructures"
Nakano, Aiichiro, Rajiv K. Kalia i Priya Vashishta. Computer Simulation of Strain Engineering and Photonics Semiconducting Nanostructure on Parallel Architectures. Fort Belvoir, VA: Defense Technical Information Center, luty 2000. http://dx.doi.org/10.21236/ada384426.
Pełny tekst źródła