Artykuły w czasopismach na temat „Self-temperature Compensation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Self-temperature Compensation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shi, Ran, Jian Zhao, An Ping Qiu i Guo Ming Xia. "Temperature Self-Compensation of Micromechanical Silicon Resonant Accelerometer". Applied Mechanics and Materials 373-375 (sierpień 2013): 373–81. http://dx.doi.org/10.4028/www.scientific.net/amm.373-375.373.
Pełny tekst źródłaTao, Wang, He Dawei, Wang Ziqian i Wang Yongsheng. "A novel temperature self-compensation FBG vibration sensor". Journal of Physics: Conference Series 276 (1.02.2011): 012146. http://dx.doi.org/10.1088/1742-6596/276/1/012146.
Pełny tekst źródłaDu, Qing Fu. "Temperature Measurement with High Accuracy". Advanced Materials Research 301-303 (lipiec 2011): 1333–38. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.1333.
Pełny tekst źródłaLi, Yinan, Junbo Wang, Zhenyu Luo, Deyong Chen i Jian Chen. "A Resonant Pressure Microsensor Capable of Self-Temperature Compensation". Sensors 15, nr 5 (29.04.2015): 10048–58. http://dx.doi.org/10.3390/s150510048.
Pełny tekst źródłaLiu, Guigen, Weilin Hou, Wei Qiao i Ming Han. "Fast-response fiber-optic anemometer with temperature self-compensation". Optics Express 23, nr 10 (14.05.2015): 13562. http://dx.doi.org/10.1364/oe.23.013562.
Pełny tekst źródłaPshenitsyn, A. A. "Self-compensation of high-temperature pipelines with elastic attachment". Russian Engineering Research 29, nr 3 (marzec 2009): 246–48. http://dx.doi.org/10.3103/s1068798x0903006x.
Pełny tekst źródłaChen, Ke, Beilei Yang, Min Guo, Hong Deng, Bo Zhang, Shuai Liu, Chenyang Li, Ran An, Wei Peng i Qingxu Yu. "Fiber-optic photoacoustic gas sensor with temperature self-compensation". Optics Letters 45, nr 8 (15.04.2020): 2458. http://dx.doi.org/10.1364/ol.390898.
Pełny tekst źródłaHan, Ying, Yan Jun Wang i Shou Ren Wang. "The Research Status of Self-Compensation Lubricating Composites at High Temperature". Applied Mechanics and Materials 470 (grudzień 2013): 108–11. http://dx.doi.org/10.4028/www.scientific.net/amm.470.108.
Pełny tekst źródłaHu, Pan, Xinglin Tong, Minli Zhao, Chengwei Deng, Qian Guo, Yan Mao i Kun Wang. "Study on high temperature Fabry–Perot fiber acoustic sensor with temperature self-compensation". Optical Engineering 54, nr 9 (10.09.2015): 097104. http://dx.doi.org/10.1117/1.oe.54.9.097104.
Pełny tekst źródłaYANG Liang, 杨亮, 苏岩 SU Yan, 裘安萍 QIU An-ping i 夏国明 XIA Guo-ming. "Self-temperature compensation for high quality factor micro-machined gyroscope". Optics and Precision Engineering 21, nr 11 (2013): 2870–76. http://dx.doi.org/10.3788/ope.20132111.2870.
Pełny tekst źródłaCai, Pengcheng, Xingyin Xiong, Kunfeng Wang, Liangbo Ma, Zheng Wang, Yunfei Liu i Xudong Zou. "A Novel Self-Temperature Compensation Method for Mode-Localized Accelerometers". Micromachines 13, nr 3 (13.03.2022): 437. http://dx.doi.org/10.3390/mi13030437.
Pełny tekst źródłaHuang, Y. S., i M. S. Young. "An Accurate Ultrasonic Distance Measurement System with Self Temperature Compensation". Instrumentation Science & Technology 37, nr 1 (7.01.2009): 124–33. http://dx.doi.org/10.1080/10739140802584780.
Pełny tekst źródłaYenuganti, Sujan, Chen Zhang i Haifeng Zhang. "Quartz Crystal Microbalance for viscosity measurement with temperature self-compensation". Mechatronics 59 (maj 2019): 189–98. http://dx.doi.org/10.1016/j.mechatronics.2019.04.005.
Pełny tekst źródłaZhao, Hongxia, Feng Wang, Zhaojia Han, Peihong Cheng i Zhiqun Ding. "Research Advances on Fiber-Optic SPR Sensors with Temperature Self-Compensation". Sensors 23, nr 2 (6.01.2023): 644. http://dx.doi.org/10.3390/s23020644.
Pełny tekst źródłaYang, Xianchao, Yuhuai Liu, Fang Wang, Ying Lu i Jianquan Yao. "Temperature Self-Compensation Biosensor Based on LPG Concatenated With SNCS Structure". IEEE Sensors Journal 21, nr 1 (1.01.2021): 366–72. http://dx.doi.org/10.1109/jsen.2020.3014971.
Pełny tekst źródłaTakiguchi, Yu, Tomoko Otsu, Takashi Inoue i Haruyoshi Toyoda. "Self-distortion compensation of spatial light modulator under temperature-varying conditions". Optics Express 22, nr 13 (23.06.2014): 16087. http://dx.doi.org/10.1364/oe.22.016087.
Pełny tekst źródłaKhan, Mohd Mansoor, Nishtha Panwar i Ravi Dhawan. "Modified cantilever beam shaped FBG based accelerometer with self temperature compensation". Sensors and Actuators A: Physical 205 (styczeń 2014): 79–85. http://dx.doi.org/10.1016/j.sna.2013.10.027.
Pełny tekst źródłaYe, Rong Ke, i Rong Bin Hu. "A Bandgap Reference with High Order Temperature Compensation". Advanced Materials Research 1049-1050 (październik 2014): 649–52. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.649.
Pełny tekst źródłaLiu, Jili, Mingrui Fu, Chao Meng, Jianpeng Li, Kai Li, Jun Hu i Xiaojuan Chen. "Consideration of Thermo-Vacuum Stability of a MEMS Gyroscope for Space Applications". Sensors 20, nr 24 (15.12.2020): 7172. http://dx.doi.org/10.3390/s20247172.
Pełny tekst źródłaLee, Jaehoon, Changyeop Jeon, Taehyeong Jeon, Proloy Das, Yongho Lee, Byeonghwa Lim i CheolGi Kim. "Bridge Resistance Compensation for Noise Reduction in a Self-Balanced PHMR Sensor". Sensors 21, nr 11 (21.05.2021): 3585. http://dx.doi.org/10.3390/s21113585.
Pełny tekst źródłaKlimkovich, B. V. "Influence of Random Error of Temperature Sensors on the Quality of Temperature Compensation of Fog Bias by the Neural Network". Giroskopiya i Navigatsiya 28, nr 4 (2020): 53–70. http://dx.doi.org/10.17285/0869-7035.0049.
Pełny tekst źródłaWang, Hongbo, Bin Ju, Wei Li i Zhihua Feng. "Ultrastable eddy current displacement sensor working in harsh temperature environments with comprehensive self-temperature compensation". Sensors and Actuators A: Physical 211 (maj 2014): 98–104. http://dx.doi.org/10.1016/j.sna.2014.03.008.
Pełny tekst źródłaWang, Qi, Ju-Xin Jiang, Lei Wang, Xiang-Yu Yin, Xin Yan, Aisong Zhu, Fengmei Qiu i Ke-Ke Zhang. "An asymmetric grating refractive index sensor generating quasi-bound states in the continuum with high figure of merit and temperature self-compensation". Journal of Physics D: Applied Physics 55, nr 15 (20.01.2022): 155103. http://dx.doi.org/10.1088/1361-6463/ac47c1.
Pełny tekst źródłaLIANG, LIANG, ZHANGMING ZHU i YINTANG YANG. "A VERY LOW-TC SECOND-ORDER TEMPERATURE-COMPENSATED CMOS CURRENT REFERENCE". Journal of Circuits, Systems and Computers 23, nr 03 (marzec 2014): 1450042. http://dx.doi.org/10.1142/s021812661450042x.
Pełny tekst źródłaSong, Yang, Liwei Hua, Jincheng Lei, Qi Zhang, Jie Liu, Lingyun Ye i Hai Xiao. "An IFPI Temperature Sensor Fabricated in an Unstriped Optical Fiber with Self-Strain-Compensation Function". Journal of Sensors 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/6419623.
Pełny tekst źródłaWu, Yue, Tian Tian, Yin Wu, Yu Yang, Yunfei Zhang i Ximing Qin. "Systematic Studies of the Circadian Clock Genes Impact on Temperature Compensation and Cell Proliferation Using CRISPR Tools". Biology 10, nr 11 (18.11.2021): 1204. http://dx.doi.org/10.3390/biology10111204.
Pełny tekst źródłaPrikhodko, Igor P., Alexander A. Trusov i Andrei M. Shkel. "Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing". Sensors and Actuators A: Physical 201 (październik 2013): 517–24. http://dx.doi.org/10.1016/j.sna.2012.12.024.
Pełny tekst źródłaWang, Hongbo, i Zhihua Feng. "Ultrastable and highly sensitive eddy current displacement sensor using self-temperature compensation". Sensors and Actuators A: Physical 203 (grudzień 2013): 362–68. http://dx.doi.org/10.1016/j.sna.2013.09.016.
Pełny tekst źródłaPecherskaya, E. A., S. A. Gurin i M. D. Novichkov. "Combined Thin-Film Resistive and Strain-Resistant Structures with Temperature Self-Compensation". Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 16, nr 6 (grudzień 2022): 1074–80. http://dx.doi.org/10.1134/s1027451022060209.
Pełny tekst źródłaIslam, Mohammad, Ran Wei, Jaesung Lee, Yong Xie, Soumyajit Mandal i Philip Feng. "A Temperature-Compensated Single-Crystal Silicon-on-Insulator (SOI) MEMS Oscillator with a CMOS Amplifier Chip". Micromachines 9, nr 11 (29.10.2018): 559. http://dx.doi.org/10.3390/mi9110559.
Pełny tekst źródłaChughtai, M. T. "Circuit Design for Thermal Compensation of Avalanche Photodiode". Engineering, Technology & Applied Science Research 9, nr 1 (16.02.2019): 3774–77. http://dx.doi.org/10.48084/etasr.2475.
Pełny tekst źródłaYuan, Mei, Si Si Xiong i Shao Peng Dong. "Design of Self-Compensated High Accuracy Fuel Level Sensor". Applied Mechanics and Materials 281 (styczeń 2013): 23–27. http://dx.doi.org/10.4028/www.scientific.net/amm.281.23.
Pełny tekst źródłaRamalingame, Rajarajan, Jose Roberto Bautista-Quijano, Danrlei de Farias Alves i Olfa Kanoun. "Temperature Self-Compensated Strain Sensors based on MWCNT-Graphene Hybrid Nanocomposite". Journal of Composites Science 3, nr 4 (7.11.2019): 96. http://dx.doi.org/10.3390/jcs3040096.
Pełny tekst źródłaZhu, Weitao, Guangkai Sun, Yanlin He, Wei Zhuang, Kangpeng Zhou i Wenjing Zhai. "Shape reconstruction based on a multicore optical fiber array with temperature self-compensation". Applied Optics 60, nr 20 (6.07.2021): 5795. http://dx.doi.org/10.1364/ao.417587.
Pełny tekst źródłaLi, Zhaojun, Liangtao Hou, Lingling Ran, Jing Kang i Jiuru Yang. "Ultra-Sensitive Fiber Refractive Index Sensor with Intensity Modulation and Self-Temperature Compensation". Sensors 19, nr 18 (4.09.2019): 3820. http://dx.doi.org/10.3390/s19183820.
Pełny tekst źródłaMa, Tian-Bing, Bao-Wei Zi, Yong-Cun Guo, Liu-Yi Ling, You-Rui Huang i Xiao-Fen Jia. "Distributed optical fiber temperature sensor based on self-compensation of fitting attenuation difference". Acta Physica Sinica 69, nr 3 (2020): 030701. http://dx.doi.org/10.7498/aps.69.20191456.
Pełny tekst źródłaShi, Jia, Yuye Wang, Degang Xu, Tiegen Liu, Wei Xu, Chao Zhang, Chao Yan i in. "Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser". IEEE Photonics Technology Letters 29, nr 20 (15.10.2017): 1743–46. http://dx.doi.org/10.1109/lpt.2017.2751753.
Pełny tekst źródłaZhao, Yunkun, Youze Chen, Junfeng Zhou, Yuanyang Zhao, Desheng Zhu, Yourui Tu, Benli Yu i Liang Lu. "A new fiber self-mixing temperature sensor with phase compensation for harmonic vibrations". Optical Fiber Technology 59 (październik 2020): 102336. http://dx.doi.org/10.1016/j.yofte.2020.102336.
Pełny tekst źródłaNakagomi, Shinji, Tsubasa Sai i Yoshihiro Kokubun. "Hydrogen gas sensor with self temperature compensation based on β-Ga2O3 thin film". Sensors and Actuators B: Chemical 187 (październik 2013): 413–19. http://dx.doi.org/10.1016/j.snb.2013.01.020.
Pełny tekst źródłaRayanasukha, Sirajit, Armote Somboonkaew, Sarun Sumriddetchkajorn, Kosom Chaitavon, Sataporn Chanhorm, Bunpot Saekow i Supanit Porntheeraphat. "Self-Compensation for the Influence of Working Distance and Ambient Temperature on Thermal Imaging-Based Temperature Measurement". IEEE Transactions on Instrumentation and Measurement 70 (2021): 1–6. http://dx.doi.org/10.1109/tim.2021.3103242.
Pełny tekst źródłaChakraborty, Arup Lal, Rakesh Kumar Sharma, Manoj Kumar Saxena i Sanjay Kher. "Compensation for temperature dependence of Stokes signal and dynamic self-calibration of a Raman distributed temperature sensor". Optics Communications 274, nr 2 (czerwiec 2007): 396–402. http://dx.doi.org/10.1016/j.optcom.2007.02.028.
Pełny tekst źródłaLiu, Hai Yang, Dong Zhao, Lian Jiang Sun i Meng Zhang. "Analysis of Damping Force Changing with Temperature for Self-Feedback-Friction Damper". Applied Mechanics and Materials 423-426 (wrzesień 2013): 1567–70. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.1567.
Pełny tekst źródłaZhou, Shichao, Haibin Zhu, Qinwei Ma i Shaopeng Ma. "Mechanism and Compensation of Measurement Error Induced by Thermal Deformation of Digital Camera in Photo Mechanics". Applied Sciences 10, nr 10 (15.05.2020): 3422. http://dx.doi.org/10.3390/app10103422.
Pełny tekst źródłaJia Lei, 贾磊, 葛益娴 Ge Yixian, 芮菲 Rui Fei, 王婷婷 Wang Tingting i 倪海彬 Ni Haibin. "温度自补偿的级联式光纤表面等离子体共振折射率传感器". Acta Optica Sinica 43, nr 13 (2023): 1306002. http://dx.doi.org/10.3788/aos230467.
Pełny tekst źródłaQiu, Huacheng, Fu Min, Yanguang Yang, Zengling Ran i Jinxin Duan. "Hypersonic Aerodynamic Force Balance Using Micromachined All-Fiber Fabry–Pérot Interferometric Strain Gauges". Micromachines 10, nr 5 (11.05.2019): 316. http://dx.doi.org/10.3390/mi10050316.
Pełny tekst źródłaZuev, Andrey, Andrey Ivashko i Denis Lunin. "METHODS OF COMPENSATION OF MICROBOLOMETER MATRIСES SELF-HEATING IN THE PROCESSING OF THERMAL IMAGES". Advanced Information Systems 6, nr 2 (14.07.2022): 67–73. http://dx.doi.org/10.20998/2522-9052.2022.2.11.
Pełny tekst źródłaLi, Hongli, Gang Xu, Xin Gui i Lei Liang. "A Double FBGs Temperature Self-Compensating Displacement Sensor and Its Application in Subway Monitoring". Materials 15, nr 19 (1.10.2022): 6831. http://dx.doi.org/10.3390/ma15196831.
Pełny tekst źródłaHu, Jie, Qiu Ping Zhu, Min Li Zhao, Zhuo Yan Leng, Ting Cai, Kun Wang i Jia Yu Liu. "Fiber Bragg Grating Sensor for the Research of Water Level Measurement". Advanced Materials Research 823 (październik 2013): 349–53. http://dx.doi.org/10.4028/www.scientific.net/amr.823.349.
Pełny tekst źródłaWang Yonghong, 王永洪, 张明义 Zhang Mingyi, 张春巍 Zhang Chunwei, 白晓宇 Bai Xiaoyu i 桑松魁 Sang Songkui. "Strain Sensing Measurement Technology for Fiber Bragg Grating with Holder Type Temperature Self-Compensation". Laser & Optoelectronics Progress 55, nr 5 (2018): 050605. http://dx.doi.org/10.3788/lop55.050605.
Pełny tekst źródłaLu, Da-Yong, Xiang-Lu Gao i Shan Wang. "Abnormal Curie-temperature shift in Ho-doped BaTiO3 ceramics with the self-compensation mode". Results in Physics 12 (marzec 2019): 585–91. http://dx.doi.org/10.1016/j.rinp.2018.11.094.
Pełny tekst źródła