Gotowa bibliografia na temat „Self-temperature Compensation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Self-temperature Compensation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Self-temperature Compensation"
Shi, Ran, Jian Zhao, An Ping Qiu i Guo Ming Xia. "Temperature Self-Compensation of Micromechanical Silicon Resonant Accelerometer". Applied Mechanics and Materials 373-375 (sierpień 2013): 373–81. http://dx.doi.org/10.4028/www.scientific.net/amm.373-375.373.
Pełny tekst źródłaTao, Wang, He Dawei, Wang Ziqian i Wang Yongsheng. "A novel temperature self-compensation FBG vibration sensor". Journal of Physics: Conference Series 276 (1.02.2011): 012146. http://dx.doi.org/10.1088/1742-6596/276/1/012146.
Pełny tekst źródłaDu, Qing Fu. "Temperature Measurement with High Accuracy". Advanced Materials Research 301-303 (lipiec 2011): 1333–38. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.1333.
Pełny tekst źródłaLi, Yinan, Junbo Wang, Zhenyu Luo, Deyong Chen i Jian Chen. "A Resonant Pressure Microsensor Capable of Self-Temperature Compensation". Sensors 15, nr 5 (29.04.2015): 10048–58. http://dx.doi.org/10.3390/s150510048.
Pełny tekst źródłaLiu, Guigen, Weilin Hou, Wei Qiao i Ming Han. "Fast-response fiber-optic anemometer with temperature self-compensation". Optics Express 23, nr 10 (14.05.2015): 13562. http://dx.doi.org/10.1364/oe.23.013562.
Pełny tekst źródłaPshenitsyn, A. A. "Self-compensation of high-temperature pipelines with elastic attachment". Russian Engineering Research 29, nr 3 (marzec 2009): 246–48. http://dx.doi.org/10.3103/s1068798x0903006x.
Pełny tekst źródłaChen, Ke, Beilei Yang, Min Guo, Hong Deng, Bo Zhang, Shuai Liu, Chenyang Li, Ran An, Wei Peng i Qingxu Yu. "Fiber-optic photoacoustic gas sensor with temperature self-compensation". Optics Letters 45, nr 8 (15.04.2020): 2458. http://dx.doi.org/10.1364/ol.390898.
Pełny tekst źródłaHan, Ying, Yan Jun Wang i Shou Ren Wang. "The Research Status of Self-Compensation Lubricating Composites at High Temperature". Applied Mechanics and Materials 470 (grudzień 2013): 108–11. http://dx.doi.org/10.4028/www.scientific.net/amm.470.108.
Pełny tekst źródłaHu, Pan, Xinglin Tong, Minli Zhao, Chengwei Deng, Qian Guo, Yan Mao i Kun Wang. "Study on high temperature Fabry–Perot fiber acoustic sensor with temperature self-compensation". Optical Engineering 54, nr 9 (10.09.2015): 097104. http://dx.doi.org/10.1117/1.oe.54.9.097104.
Pełny tekst źródłaYANG Liang, 杨亮, 苏岩 SU Yan, 裘安萍 QIU An-ping i 夏国明 XIA Guo-ming. "Self-temperature compensation for high quality factor micro-machined gyroscope". Optics and Precision Engineering 21, nr 11 (2013): 2870–76. http://dx.doi.org/10.3788/ope.20132111.2870.
Pełny tekst źródłaRozprawy doktorskie na temat "Self-temperature Compensation"
Mavlonov, Abdurashid, Steffen Richter, Wenckstern Holger von, Rüdiger Schmidt-Grund, Michael Lorenz i Marius Grundmann. "Temperature dependent self-compensation in Al- and Ga-doped Mg0.05 Zn0.95O thin films grown by pulsed laser deposition". American Institute of Physics, 2016. https://ul.qucosa.de/id/qucosa%3A31212.
Pełny tekst źródłaZhang, Yan. "Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor". Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/30104.
Pełny tekst źródłaPh. D.
Samarao, Ashwin Kumar. "Compensation and trimming for silicon micromechanical resonators and resonator arrays for timing and spectral processing". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39543.
Pełny tekst źródłaHuang, Yi-Shing, i 黃譯興. "An Ultrasonic Temperature and Distance Measurement System with Self Interference and Self Temperature Compensation Techniques". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/48522916729521994997.
Pełny tekst źródła國立成功大學
電機工程學系碩博士班
97
This dissertation proposes a time-of-flight (TOF) measurement by employing a piezoelectric and converse piezoelectric produced self-interference ultrasonic wave. When using TOF techniques for ultrasonic temperature and distance measurement, the system error is primarily due to the inertia delay phenomenon of machine vibration. This dissertation proposes a novel driving algorithm for an ultrasonic transmitter. The first study proposes an accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm which combines both amplitude modulation (AM) and phase modulation (PM) for the TOF measurement. The proposed system can reduce error caused by inertia delay when using the AM and PM envelope square waveform (APESW). The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, a phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveforms. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1 % TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 ℃. The second study proposes an accurate distance measurement system which has self-temperature-compensation (STC) with the environmental average temperature in space, rather than a single point temperature. The proposed system adopts two identical measurement hardware sets using the APESW ultrasonic driving waveform. The first set measures the sound velocity (the environmental average temperature information is also involved) as the result of the temperature compensation data for the second distance measuring set. Without using a temperature sensor, experimental results indicate that the proposed STC distance measurement system can accurately measure the distance. The experimental standard deviation of the linearity with respect to the distance is found to be 0.21 mm at a range of 50 to 500 mm. Moreover, the proposed system’s temperature uncertainty effect produced a standard deviation of 0.093 mm, while the temperature sensor system’s uncertainty effect produced a standard deviation of 0.68 mm. In addition, the proposed driving algorithm benefits from noise resistance and ease of implementation. The algorithm is simple and can be easily adapted for other micro-processors. The main advantages of this AM and PM envelope square waveform (APESW) system are high resolution measurement, low cost, narrow bandwidth requirement, and ease of implementation.
Parida, Om Prakash. "Design, Development and Validation of High Performance Fiber Bragg Grating Accelerometers". Thesis Full text, 2020. https://etd.iisc.ac.in/handle/2005/4709.
Pełny tekst źródłaNA
Streszczenia konferencji na temat "Self-temperature Compensation"
Zhu, Tao, Qiang Zhang, Leilei Shi, Yusong Hou i Xiaoyi Bao. "All-fiber acceleration sensor with temperature self-compensation". W OFS2012 22nd International Conference on Optical Fiber Sensor, redaktorzy Yanbiao Liao, Wei Jin, David D. Sampson, Ryozo Yamauchi, Youngjoo Chung, Kentaro Nakamura i Yunjiang Rao. SPIE, 2012. http://dx.doi.org/10.1117/12.970387.
Pełny tekst źródłaWang, Mao-Dong, Chang Yi, Xiao-Yan Gui i Xing-Hua Wang. "A LOW-POWER RING OSCILLATOR WITH TEMPERATURE SELF-COMPENSATION". W 2015 International Conference on Material Engineering and Mechanical Engineering (MEME2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814759687_0079.
Pełny tekst źródłaMa, Zishuai, Anping Qiu, Qin Shi, Guoming Xia i Yang Zhao. "A real time self-temperature compensation method used for MEMS gyroscopes". W 2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, RESOURCE AND ENVIRONMENTAL ENGINEERING (MSREE 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5005260.
Pełny tekst źródłaMa, Ruiqi, Guoqing Feng, Huilong Ren, Peng Fu, Shuang Wu i Youzhen Wang. "Investigation on Temperature Compensation of Fiber Bragg Grating Sensors for Hull Monitoring". W ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77326.
Pełny tekst źródłaSun, Limin, Yang Shen i Chungeng Cao. "A novel FBG-based accelerometer with high sensitivity and temperature self-compensation". W SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. SPIE, 2009. http://dx.doi.org/10.1117/12.815579.
Pełny tekst źródłaHu, Shicheng, Haifeng Liu, Bo Liu, Wei Lin, Hao Zhang, Binbin Song i Jixuan Wu. "Self-temperature compensation approach for fiber specklegram magnetic field sensor based on polarization specklegram analysis". W Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.f1.5.
Pełny tekst źródłaZhang, Cheng, Liqing Wang, Changyun Miao i Dan Yang. "Temperature self-compensation refractometer based on cascaded SNS-FBG structure for multipoint measurement". W Advanced Sensor Systems and Applications VIII, redaktorzy Tiegen Liu i Shibin Jiang. SPIE, 2018. http://dx.doi.org/10.1117/12.2322125.
Pełny tekst źródłaHosaka, J., i M. Hikita. "Low-loss saw gas sensor with self-temperature-compensation characteristics for sensor network". W 2011 IEEE International Ultrasonics Symposium (IUS). IEEE, 2011. http://dx.doi.org/10.1109/ultsym.2011.0567.
Pełny tekst źródłaYoung-Jae Min i Soo-Won Kim. "A CMOS TDC-based digital magnetic Hall sensor using the self temperature compensation". W 2008 IEEE Custom Integrated Circuits Conference - CICC 2008. IEEE, 2008. http://dx.doi.org/10.1109/cicc.2008.4672088.
Pełny tekst źródłaXiao, Kanglin, Bo Wang, Changpei Qiu i Xin'an Wang. "Design and Implementation of a Temperature Self-Compensation Balanced Hybrid Ring Oscillator BHRO". W 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021. http://dx.doi.org/10.1109/iscas51556.2021.9401344.
Pełny tekst źródła