Gotowa bibliografia na temat „Self-Powered devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Self-Powered devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Self-Powered devices"
Xu, Sheng, Yong Qin, Chen Xu, Yaguang Wei, Rusen Yang i Zhong Lin Wang. "Self-powered nanowire devices". Nature Nanotechnology 5, nr 5 (28.03.2010): 366–73. http://dx.doi.org/10.1038/nnano.2010.46.
Pełny tekst źródłaConzuelo, Felipe, Adrian Ruff i Wolfgang Schuhmann. "Self-powered bioelectrochemical devices". Current Opinion in Electrochemistry 12 (grudzień 2018): 156–63. http://dx.doi.org/10.1016/j.coelec.2018.05.010.
Pełny tekst źródłaAmsel, Avigail D., Arkady Rudnitsky i Zeev Zalevsky. "A Self-Powered Medical Device for Blood Irradiation Therapy". Journal of Atomic, Molecular, and Optical Physics 2012 (27.06.2012): 1–5. http://dx.doi.org/10.1155/2012/963187.
Pełny tekst źródłaElahi, Hassan, Khushboo Munir, Marco Eugeni, Sofiane Atek i Paolo Gaudenzi. "Energy Harvesting towards Self-Powered IoT Devices". Energies 13, nr 21 (22.10.2020): 5528. http://dx.doi.org/10.3390/en13215528.
Pełny tekst źródłaYang, Zetian, Zhongtai Zhu, Zixuan Chen, Mingjia Liu, Binbin Zhao, Yansong Liu, Zefei Cheng, Shuo Wang, Weidong Yang i Tao Yu. "Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence". Sensors 21, nr 24 (17.12.2021): 8422. http://dx.doi.org/10.3390/s21248422.
Pełny tekst źródłaAli, Shawkat, Saleem Khan i Amine Bermak. "All-Printed Human Activity Monitoring and Energy Harvesting Device for Internet of Thing Applications". Sensors 19, nr 5 (8.03.2019): 1197. http://dx.doi.org/10.3390/s19051197.
Pełny tekst źródłaZheng, Qiang, Qizhu Tang, Zhong Lin Wang i Zhou Li. "Self-powered cardiovascular electronic devices and systems". Nature Reviews Cardiology 18, nr 1 (7.09.2020): 7–21. http://dx.doi.org/10.1038/s41569-020-0426-4.
Pełny tekst źródłaMainra, Jashan Kumar, Akshpreet Kaur, Gaurav Sapra i Parul Gaur. "Simulation and Modelling of Triboelectric Nanogenerator for Self-powered Electronic Devices". IOP Conference Series: Materials Science and Engineering 1225, nr 1 (1.02.2022): 012012. http://dx.doi.org/10.1088/1757-899x/1225/1/012012.
Pełny tekst źródłaXue, Ziao, Li Wu, Junlin Yuan, Guodong Xu i Yuxiang Wu. "Self-Powered Biosensors for Monitoring Human Physiological Changes". Biosensors 13, nr 2 (7.02.2023): 236. http://dx.doi.org/10.3390/bios13020236.
Pełny tekst źródłaKim, Minsoo P. "Multilayered Functional Triboelectric Polymers for Self-Powered Wearable Applications: A Review". Micromachines 14, nr 8 (20.08.2023): 1640. http://dx.doi.org/10.3390/mi14081640.
Pełny tekst źródłaRozprawy doktorskie na temat "Self-Powered devices"
Nyländen, T. (Teemu). "Application specific programmable processors for reconfigurable self-powered devices". Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526218755.
Pełny tekst źródłaTiivistelmä Esineiden internet tulee muuttamaan tulevaisuudessa elinympäristömme täysin. Se tulee mahdollistamaan interaktiiviset ympäristöt nykyisten passiivisten ympäristöjen sijaan. Lisäksi elinympäristömme tulee reagoimaan tekoihimme ja puheeseemme sekä myös tunteisiimme. Tämä kaikkialla läsnä olevan langaton infrastruktuuri tulee vaatimaan ennennäkemätöntä laskentatehokkuutta yhdistettynä äärimmäiseen energiatehokkuuteen. Nykyiset esineiden internet ratkaisut nojaavat lähes täysin kaupallisiin "suoraan hyllyltä" saataviin yleiskäyttöisiin mikrokontrollereihin. Ne ovat kuitenkin optimoituja pelkästään matalan tehonkulutuksen näkökulmasta, eivätkä niinkään energiatehokkuuden, saati tulevaisuuden esineiden internetin vaatiman laskentatehon suhteen. Kuitenkin esineiden internet on lähtökohtaisesti sovelluskohtaista laskentaa vaativa, joten yleiskäyttöisten prosessoreiden käyttö signaalinkäsittelytehtäviin on epäloogista. Sen sijaan sovelluskohtaisten kiihdyttimien käyttö laskentaan, todennäköisesti mahdollistaisi tavoitellun vaatimustason saavuttamisen. Tämä väitöskirja esittelee yhden mahdollisen ratkaisun matalan energian kulutuksen, korkean suorituskyvyn ja joustavuuden yhdenaikaiseen saavuttamiseen kustannustehokkaalla tavalla, käyttäen uudelleenkonfiguroitavia heterogeenisiä prosessoriratkaisuja. Työssä esitellään uusi grafiikkaprosessori-tyylinen uudelleen konfiguroitava kiihdytin esineiden internet sovellusalueelle, jota pystytään hyödyntämään useimpien laskentatehoa vaativien sovellusten kanssa. Ehdotetun kiihdyttimen ominaisuuksia arvioidaan kahta konenäkösovellusta esimerkkinä käyttäen ja osoitetaan sen saavuttavan loistavan yhdistelmän energia tehokkuutta ja suorituskykyä. Kiihdytin suunnitellaan käyttäen tehokasta ja nopeaa ohjelmiston ja laitteiston yhteissuunnitteluketjua, jolla voidaan saavuttaa lähestulkoon kaupallisten "suoraan hyllyltä" saatavien prosessoreiden kehitystyön helppous, joka puolestaan mahdollistaa kustannustehokkaan kehitys- ja suunnittelutyön
Álvarez-Carulla, Albert. "Energy Harvesting Solutions for Self-Powered Devices: From Structural Health Monitoring to Biomedical Applications". Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/670900.
Pełny tekst źródłaLa tesis recoge la investigación realizada sobre el desarrollo de dispositivos verdaderamente auto- alimentados. Se muestra el desarrollo de dispositivos para el ámbito de la monitorización de la salud de estructuras (SHM) y el ámbito de los dispositivos Point-of-Care (PoC). Para ello, se implementan nuevas soluciones del ámbito de la recolección de energía para utilizar un único transductor como elemento sensor y de fuente de alimentación para el sistema. En esta investigación, los transductores utilizados son generadores piezoeléctricos y celdas galvánicas, siendo extrapolables los desarrollos realizados a otro tipos de transductores o generadores.
Wu, Wenzhuo. "Piezotronic devices and integrated systems". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51726.
Pełny tekst źródłaDhayal, Vandana Sultan Singh. "Exploring Simscape™ Modeling for Piezoelectric Sensor Based Energy Harvester". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984261/.
Pełny tekst źródłaPettersson, Ingvor. "Significance of assistive devices in the daily life of persons with stroke and their spouses /". Doctoral thesis, Örebro : Örebro University : Universitetsbiblioteket, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-460.
Pełny tekst źródłaNoble, Frazer K. "Wireless vehicle presence detection using self-harvested energy : a thesis in partial fulfilment of the requirements for the degree of Master of Engineering in Mechatronics, Massey University, Albany, New Zealand". Massey University, 2009. http://hdl.handle.net/10179/1078.
Pełny tekst źródła"Feasibility studies of self-powered piezoelectric sensors". 2004. http://library.cuhk.edu.hk/record=b5892014.
Pełny tekst źródłaThesis (M.Phil.)--Chinese University of Hong Kong, 2004.
Includes bibliographical references (leaves 67-70).
Abstracts in English and Chinese.
ABSTRACT --- p.i
摘要 --- p.ii
ACKNOWLEDGEMENTS --- p.iii
LIST OF FIGURES --- p.iv
LIST OF TABLES --- p.ix
Chapter CHAPTER 1 --- INTRODUCTION --- p.1
Chapter 1.1 --- Background --- p.1
Chapter 1.2 --- Literature Review --- p.3
Chapter 1.3 --- Research Objectives --- p.5
Chapter 1.4 --- Thesis Organization --- p.5
Chapter CHAPTER 2 --- MODELING OF PIEZOELECTRIC SENSOR/GENERATOR --- p.6
Chapter 2.1 --- Constitutive Equations --- p.6
Chapter 2.2 --- Voltage Output of Piezoelectric Materials --- p.9
Chapter 2.2.1 --- Short Circuit --- p.9
Chapter 2.2.2 --- Open Circuit --- p.11
Chapter 2.3 --- Sensitivity and Power Generation --- p.13
Chapter 2.4 --- Modeling and Analysis of Sensor Structure --- p.23
Chapter 2.4.1 --- Damping Ratio Estimation --- p.25
Chapter (a) --- Half-power bandwidth method --- p.25
Chapter (b) --- Linear interpolation method --- p.25
Chapter 2.4.2 --- Trade-off between Resonant Frequency and Output Sensitivity of a Sensor --- p.29
Chapter (a) --- Maximize Sme with constant wn --- p.31
Chapter (b) --- Maximize wn with constant Sme --- p.33
Chapter 2.5 --- Model Accuracy --- p.39
Chapter CHAPTER 3 --- POWER HARVESTING --- p.41
Chapter 3.1 --- Circuit Model --- p.41
Chapter 3.2 --- Energy Storage --- p.47
Chapter 3.3 --- Size Effect on Power Output --- p.49
Chapter 3.4 --- Power Harvesting Circuit --- p.50
Chapter 3.4.1 --- Performance of the Power Harvesting Circuit --- p.51
Chapter (a) --- Power Harvesting Circuit Efficiency --- p.52
Chapter (b) --- Useful Power Output --- p.53
Chapter (c) --- System Efficiency --- p.56
Chapter (d) --- Relationship between Input Excitation and Charge Time --- p.57
Chapter 3.5 --- Harvested Energy for Wireless Transmission --- p.60
Chapter CHAPTER 4 --- CONCLUDING REMARKS --- p.64
Chapter 4.1 --- Sensor/Generator Design --- p.64
Chapter 4.2 --- Potential Applications --- p.64
Chapter 4.3 --- Conclusion --- p.65
Chapter 4.4 --- Future Work --- p.66
REFERENCES --- p.67
APPENDIX --- p.71
Coelho, Guilherme Miguel Melo. "Wearable Integrated Devices for Sustainable Energy: Self Powered e-Cloths". Master's thesis, 2020. http://hdl.handle.net/10362/112787.
Pełny tekst źródłaYang, Te-Fu, i 陽德甫. "Battery Powered Self-Cancellation DC-DC Buck Converter with 97% Output Voltage Accuracy for Biomedical Devices in 28nm CMOS Process". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/4fvv94.
Pełny tekst źródła國立交通大學
電機工程學系
104
This dissertation presents a battery powered self-cancellation DC-DC buck (SC-Buck) converter with 97% output voltage accuracy for biomedical devices in 28nm CMOS process. As the publics are paying more attention on the healthcare services. Advantages of portable biomedical devices become more and more obvious. Due to increasing average lifespan, the convenience healthcare delivery is urgently needed. A remote monitoring service, for example, helps the healthcare practitioners to observe any unusual symptom by monitoring the blood pressure, body temperature, heart beats, etc. These kinds of healthcare services highly depend on the support of portable medical devices. For portable devices, the battery is the key component to deliver power anywhere. Therefore, the battery of a medical device has been developed with lots of efforts. But power management unit (PMU) of medical devices, which directly delivers supplying voltage to systems, should also be carefully designed. Reliability and safety of power sources are important because any failure or malfunction is not a viable option when it comes to human life. On the other hand, IEC60601-1 standard also specifies the stability of supplying DC voltage. Due to above requirements, the proposed SC-Buck converter provides high accuracy and stable output voltage to the loading system. SC-Buck converter overcomes process, voltage and temperature (PVT) variations and increases output voltage accuracy up to 97% without any trimming procedures. The developed technique also overcomes the discontinuity in conventional offset cancellation scheme and reduces large silicon area occupation, which is required to decrease mismatch in conventional operational amplifiers (OPAMPs). Monte Carlo analysis verifies the reduction of mismatch. Furthermore, increasing the functionality of portable medical devices is also expected by clinicians and patients. High performance services require extra power suppling. Thus, Turbo-boost charger developed by Texas Instruments (TI) provides higher power delivery, but restricts the applications. Therefore, this dissertation also presents a new control topology of Turbo-boost charger named as the fully automatic control (FAC) technique, which can support any loading systems. Modeling from basic switching-based charger to the Turbo-boost charger is completely derived and analyzed.
Yang, Chih-Hsiang, i 楊智翔. "Using Piezoelectric Energy Harvesting Devices in Synchronized Switch Harvesting on Inductor (SSHI) Circuit Driven by Induction Coil and its Application in Self-powered System". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/18544649254029144011.
Pełny tekst źródła國立臺灣大學
工程科學及海洋工程學研究所
100
In recent years, energy depletion and alternative energy issues gradually are taken seriously, the piezoelectric material security, good stability and small size of the advantage, making it an important alternative energy sources. The energy derived from the piezoelectric power harvester could be applied to the circuit of Synchronized Switch Harvesting on Inductor (SSHI) successfully. Moreover, by allocating the energy into two parts, one for SSHI circuit, the other for electric components, the energy is enough to supply the whole circuit, which makes it become a self-powered system with high efficiency. In this paper, the method of electromagnetic induction is used to drive the switches because its produced signals have low noises. This advantage makes it easier to control, decreases the design of filter circuits in the whole system and deduces the energy consumption.
Książki na temat "Self-Powered devices"
Alhawari, Mohammad, Baker Mohammad, Hani Saleh i Mohammed Ismail. Energy Harvesting for Self-Powered Wearable Devices. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62578-2.
Pełny tekst źródłaKottapalli, Ajay Giri Prakash, Kai Tao, Debarun Sengupta i Michael S. Triantafyllou. Self-Powered and Soft Polymer MEMS/NEMS Devices. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05554-7.
Pełny tekst źródłaDhakar, Lokesh. Triboelectric Devices for Power Generation and Self-Powered Sensing Applications. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3815-0.
Pełny tekst źródłaColomer-Farrarons, Jordi, i Pere Lluís Miribel-Català. A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0686-6.
Pełny tekst źródłaLee, Tae-Ho. Formation of KNbO3 Thin Films for Self-Powered ReRAM Devices and Artificial Synapses. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2535-9.
Pełny tekst źródłaLluís, Miribel-Català Pere, i SpringerLink (Online service), red. A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices: Three-Electrodes Amperometric Biosensor Approach. Dordrecht: Springer Science+Business Media B.V., 2011.
Znajdź pełny tekst źródłaEducational Resources Information Center (U.S.), red. Adaptive driving equipment: Selection and major considerations ; [and], battery powered scooters and 3-wheelers. [West Columbia, S.C: Center for Rehabilitation Technology Services, South Carolina Vocational Rehabilitation Dept., 1996.
Znajdź pełny tekst źródłaMuli, Apostle Robert. Self Powered Green Energy Devices. Lulu Press, Inc., 2013.
Znajdź pełny tekst źródłaYuce, Mehmet, M. A. Parvez Mahmud i Abbas Kouzani. Self-Powered Wearable and Implantable Devices. Elsevier Science & Technology Books, 2022.
Znajdź pełny tekst źródłaMohammad, Baker, Mohammed Ismail, Mohammad Alhawari i Hani Saleh. Energy Harvesting for Self-Powered Wearable Devices. Springer International Publishing AG, 2017.
Znajdź pełny tekst źródłaCzęści książek na temat "Self-Powered devices"
Misra, Abha. "Self-Powered Supercapacitor". W Micro to Quantum Supercapacitor Devices, 111–14. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003174554-7.
Pełny tekst źródłaÁlvarez-Carulla, Albert, Jordi Colomer-Farrarons i Pere Lluís Miribel Català. "Galvanic Cell-Based Self-powered Devices". W Self-powered Energy Harvesting Systems for Health Supervising Applications, 51–80. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5619-5_3.
Pełny tekst źródłaZhang, Xiaosheng, i Danliang Wen. "All-in-One Self-Powered Microsystems". W Flexible and Stretchable Triboelectric Nanogenerator Devices, 305–37. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527820153.ch16.
Pełny tekst źródłaLeonov, Vladimir. "Energy Harvesting for Self-Powered Wearable Devices". W Wearable Monitoring Systems, 27–49. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7384-9_2.
Pełny tekst źródłaKarbari, Sudha R. "Structural Triboelectric Nanogenerators for Self-powered Wearable Devices". W Advances in Intelligent Systems and Computing, 187–97. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1819-1_19.
Pełny tekst źródłaSengupta, Debarun, Ssu-Han Chen i Ajay Giri Prakash Kottapalli. "Nature-Inspired Self-Powered Sensors and Energy Harvesters". W Self-Powered and Soft Polymer MEMS/NEMS Devices, 61–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05554-7_3.
Pełny tekst źródłaTao, Kai, Honglong Chang, Jin Wu, Lihua Tang i Jianmin Miao. "MEMS/NEMS-Enabled Energy Harvesters as Self-Powered Sensors". W Self-Powered and Soft Polymer MEMS/NEMS Devices, 1–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05554-7_1.
Pełny tekst źródłaSengupta, Debarun, i Ajay Giri Prakash Kottapalli. "Flexible and Wearable Piezoelectric Nanogenerators". W Self-Powered and Soft Polymer MEMS/NEMS Devices, 31–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05554-7_2.
Pełny tekst źródłaDas, Apurba, i Pamu Dobbidi. "Self-Powered Devices: A New Paradigm in Biomedical Engineering". W Bioelectronics, 323–39. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003263265-20.
Pełny tekst źródłaDhakar, Lokesh. "Skin Based Self-powered Wearable Sensors and Nanogenerators". W Triboelectric Devices for Power Generation and Self-Powered Sensing Applications, 67–85. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3815-0_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Self-Powered devices"
Mani, Suresh, Joseph Mullassery, Olive Jesudas, Harshad Dhuri i Janak Varma. "Self powered ZigBee devices". W ICWET '10: International Conference and Workshop on Emerging Trends in Technology. New York, NY, USA: ACM, 2010. http://dx.doi.org/10.1145/1741906.1742226.
Pełny tekst źródłaGao, Wei. "Self-powered wearable biosensors". W Energy Harvesting and Storage: Materials, Devices, and Applications XI, redaktorzy Achyut K. Dutta, Palani Balaya i Sheng Xu. SPIE, 2021. http://dx.doi.org/10.1117/12.2588899.
Pełny tekst źródłaLian, Yong, i Xiaodan Zou. "Towards self-powered wireless biomedical sensor devices". W 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT). IEEE, 2008. http://dx.doi.org/10.1109/icsict.2008.4734854.
Pełny tekst źródłaBuss, Dennis. "Research in self-powered electronic systems". W 2011 IEEE International Electron Devices Meeting (IEDM). IEEE, 2011. http://dx.doi.org/10.1109/iedm.2011.6131528.
Pełny tekst źródłaAndrew, Trisha. "Self-powered garment-integrated sensors (Conference Presentation)". W Organic Photonic Materials and Devices XXI, redaktorzy Christopher E. Tabor, François Kajzar i Toshikuni Kaino. SPIE, 2019. http://dx.doi.org/10.1117/12.2515254.
Pełny tekst źródłaThekkekara, Litty V. "3D laser-printed self-powered textiles". W Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVII, redaktorzy Wounjhang Park, André-Jean Attias i Balaji Panchapakesan. SPIE, 2020. http://dx.doi.org/10.1117/12.2564674.
Pełny tekst źródłaGad, A. E., M. W. G. Hoffmann, J. D. Prades, F. Ramirez, R. Fiz, H. Shen, S. Mathur i A. Waag. "Self-Powered Solar Diode Gas Sensors". W 2014 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2014. http://dx.doi.org/10.7567/ssdm.2014.d-1-4.
Pełny tekst źródłaWu, Chung-Yu, Po-Han Kuo, Chi-Kuan Tzeng, Chuan-Chin Chiao, Jui-Wen Pan i Yueh-Chun Tsai. "Self-powered subretinal prosthetic devices using optoelectronic technologies". W 2016 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2016. http://dx.doi.org/10.1109/omn.2016.7565841.
Pełny tekst źródłaReilly, Kyle M., Michael T. Birner i Nathan G. Johnson. "Measuring air quality using wireless self-powered devices". W 2015 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2015. http://dx.doi.org/10.1109/ghtc.2015.7343983.
Pełny tekst źródłaDoumenis, Gregory, Ioannis Masklavanos i Konstantine Tsiapali. "Lightweight operation scheduling for self-powered IoT devices". W 2022 7th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM). IEEE, 2022. http://dx.doi.org/10.1109/seeda-cecnsm57760.2022.9932933.
Pełny tekst źródła