Artykuły w czasopismach na temat „Self-assembling Amino Acid”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Self-assembling Amino Acid”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Liu, Yi, Eunkyoung Kim, Rein V. Ulijn, William E. Bentley i Gregory F. Payne. "Reversible Electroaddressing of Self-assembling Amino-Acid Conjugates". Advanced Functional Materials 21, nr 9 (7.03.2011): 1575–80. http://dx.doi.org/10.1002/adfm.201002020.
Pełny tekst źródłaYokoi, Hidenori, i Takatoshi Kinoshita. "Strategy for Designing Self-Assembling Peptides to Prepare Transparent Nanofiber Hydrogel at Neutral pH". Journal of Nanomaterials 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/537262.
Pełny tekst źródłaMoriuchi, Toshiyuki, i Toshikazu Hirao. "Chirality Organization Induced by Self-Assembling Properties of Amino Acid Units." Journal of Synthetic Organic Chemistry, Japan 59, nr 12 (2001): 1195–203. http://dx.doi.org/10.5059/yukigoseikyokaishi.59.1195.
Pełny tekst źródłaWarren, James P., Matthew P. Culbert, Danielle E. Miles, Steven Maude, Ruth K. Wilcox i Paul A. Beales. "Controlling the Self-Assembly and Material Properties of β-Sheet Peptide Hydrogels by Modulating Intermolecular Interactions". Gels 9, nr 6 (26.05.2023): 441. http://dx.doi.org/10.3390/gels9060441.
Pełny tekst źródłaSingh, Pijush, Souvik Misra, Nayim Sepay, Sanjoy Mondal, Debes Ray, Vinod K. Aswal i Jayanta Nanda. "Self-assembling behaviour of a modified aromatic amino acid in competitive medium". Soft Matter 16, nr 28 (2020): 6599–607. http://dx.doi.org/10.1039/d0sm00584c.
Pełny tekst źródłaTinajero-Díaz, E., A. Martínez de Ilarduya, B. Cavanagh, A. Heise i S. Muñoz-Guerra. "Poly(amino acid)-grafted polymacrolactones. Synthesis, self-assembling and ionic coupling properties". Reactive and Functional Polymers 143 (październik 2019): 104316. http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104316.
Pełny tekst źródłaLiu, Jing, Can Wu, Guoru Dai, Feng Feng, Yuquan Chi, Keming Xu i Wenying Zhong. "Molecular self-assembly of a tyroservatide-derived octapeptide and hydroxycamptothecin for enhanced therapeutic efficacy". Nanoscale 13, nr 9 (2021): 5094–102. http://dx.doi.org/10.1039/d0nr08741f.
Pełny tekst źródłaArungani NS i Kalaivani Venkadessan. "PEPTIDES IN REMINERALISATION - A REVIEW". International Journal of Community Dentistry 10, nr 1 (14.06.2022): 18–22. http://dx.doi.org/10.56501/intjcommunitydent.v10i1.48.
Pełny tekst źródłaLamas, Alejandro, Arcadio Guerra, Manuel Amorín i Juan R. Granja. "New self-assembling peptide nanotubes of large diameter using δ-amino acids". Chemical Science 9, nr 43 (2018): 8228–33. http://dx.doi.org/10.1039/c8sc02276c.
Pełny tekst źródłaRang, Alexander, Martin Nieger, Marianne Engeser, Arne Lützen i Christoph A. Schalley. "Self-assembling squares with amino acid-decorated bipyridines: heterochiral self-sorting of dynamically interconverting diastereomers". Chemical Communications, nr 39 (2008): 4789. http://dx.doi.org/10.1039/b806916f.
Pełny tekst źródłaMills, Jeremy H., William Sheffler, Maraia E. Ener, Patrick J. Almhjell, Gustav Oberdorfer, José Henrique Pereira, Fabio Parmeggiani, Banumathi Sankaran, Peter H. Zwart i David Baker. "Computational design of a homotrimeric metalloprotein with a trisbipyridyl core". Proceedings of the National Academy of Sciences 113, nr 52 (8.12.2016): 15012–17. http://dx.doi.org/10.1073/pnas.1600188113.
Pełny tekst źródłaRosselin, Marie, Grégory Meyer, Pierre Guillet, Thomas Cheviet, Guillaume Walther, Annette Meister, Dimitra Hadjipavlou-Litina i Grégory Durand. "Divalent Amino-Acid-Based Amphiphilic Antioxidants: Synthesis, Self-Assembling Properties, and Biological Evaluation". Bioconjugate Chemistry 27, nr 3 (22.02.2016): 772–81. http://dx.doi.org/10.1021/acs.bioconjchem.6b00002.
Pełny tekst źródłaGuerra, Arcadio, Roberto J. Brea, Manuel Amorín, Luis Castedo i Juan R. Granja. "Self-assembling properties of all γ-cyclic peptides containing sugar amino acid residues". Organic & Biomolecular Chemistry 10, nr 44 (2012): 8762. http://dx.doi.org/10.1039/c2ob26612a.
Pełny tekst źródłaKoga, Tomoyuki, Eri Aso i Nobuyuki Higashi. "Novel Self-Assembling Amino Acid-Derived Block Copolymer with Changeable Polymer Backbone Structure". Langmuir 32, nr 47 (24.06.2016): 12378–86. http://dx.doi.org/10.1021/acs.langmuir.6b01617.
Pełny tekst źródłaMoriuchi, Toshiyuki, i Toshikazu Hirao. "ChemInform Abstract: Chirality Organization Induced by Self-Assembling Properties of Amino Acid Units". ChemInform 33, nr 21 (21.05.2010): no. http://dx.doi.org/10.1002/chin.200221246.
Pełny tekst źródłaLa Manna, Sara, Concetta Di Natale, Valentina Onesto i Daniela Marasco. "Self-Assembling Peptides: From Design to Biomedical Applications". International Journal of Molecular Sciences 22, nr 23 (23.11.2021): 12662. http://dx.doi.org/10.3390/ijms222312662.
Pełny tekst źródłaNelli, Srinivasa Rao, Jhong-Hua Lin, Thi Ngoc Anh Nguyen, Dion Tzu-Huan Tseng, Satish Kumar Talloj i Hsin-Chieh Lin. "Influence of amino acid side chains on the formation of two component self-assembling nanofibrous hydrogels". New Journal of Chemistry 41, nr 3 (2017): 1229–34. http://dx.doi.org/10.1039/c6nj02820a.
Pełny tekst źródłaLehrman, Jessica A., Honggang Cui, Wei-Wen Tsai, Tyson J. Moyer i Samuel I. Stupp. "Supramolecular control of self-assembling terthiophene–peptide conjugates through the amino acid side chain". Chemical Communications 48, nr 78 (2012): 9711. http://dx.doi.org/10.1039/c2cc34375d.
Pełny tekst źródłaCaplan, Michael R., Elissa M. Schwartzfarb, Shuguang Zhang, Roger D. Kamm i Douglas A. Lauffenburger. "Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence". Biomaterials 23, nr 1 (styczeń 2002): 219–27. http://dx.doi.org/10.1016/s0142-9612(01)00099-0.
Pełny tekst źródłaGaynanova, Gulnara, Leysan Vasileva, Ruslan Kashapov, Darya Kuznetsova, Rushana Kushnazarova, Anna Tyryshkina, Elmira Vasilieva, Konstantin Petrov, Lucia Zakharova i Oleg Sinyashin. "Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability". Molecules 26, nr 22 (10.11.2021): 6786. http://dx.doi.org/10.3390/molecules26226786.
Pełny tekst źródłaPasc, Andreea, Firmin Obounou Akong, Sedat Cosgun i Christine Gérardin. "Differences between β-Ala and Gly-Gly in the design of amino acids-based hydrogels". Beilstein Journal of Organic Chemistry 6 (11.10.2010): 973–77. http://dx.doi.org/10.3762/bjoc.6.109.
Pełny tekst źródłaAhmed, Saleh A., Xavier Sallenave, Frédéric Fages, Gudrun Mieden-Gundert, Walter M. Müller, Ute Müller, Fritz Vögtle i Jean-Luc Pozzo. "Multiaddressable Self-Assembling Organogelators Based on 2H-Chromene andN-Acyl-1,ω-amino Acid Units†". Langmuir 18, nr 19 (wrzesień 2002): 7096–101. http://dx.doi.org/10.1021/la025545g.
Pełny tekst źródłaJeong, Woo-jin, Soo hyun Kwon i Yong-beom Lim. "Modular Self-Assembling Peptide Platform with a Tunable Thermoresponsiveness via a Single Amino Acid Substitution". Advanced Functional Materials 28, nr 35 (2.07.2018): 1803114. http://dx.doi.org/10.1002/adfm.201803114.
Pełny tekst źródłaLesiak, Marta, Aleksandra Augusciak-Duma, Anna Szydlo, Ksymena Pruszczynska i Aleksander L. Sieron. "Specific inhibition of procollagen C-endopeptidase activity by synthetic peptide with conservative sequence found in chordin." Acta Biochimica Polonica 55, nr 2 (7.06.2008): 297–305. http://dx.doi.org/10.18388/abp.2008_3076.
Pełny tekst źródłaPetropoulou, Katerina, Varvara Platania, Maria Chatzinikolaidou i Anna Mitraki. "A Doubly Fmoc-Protected Aspartic Acid Self-Assembles into Hydrogels Suitable for Bone Tissue Engineering". Materials 15, nr 24 (14.12.2022): 8928. http://dx.doi.org/10.3390/ma15248928.
Pełny tekst źródłaLi, Mingyu, Mingyuan Liu, Yuna Shang, Chunhua Ren, Jianfeng Liu, Hongxing Jin i Zhongyan Wang. "The substitution of a single amino acid with its enantiomer for control over the adjuvant activity of self-assembling peptides". RSC Advances 10, nr 23 (2020): 13900–13906. http://dx.doi.org/10.1039/c9ra10325b.
Pełny tekst źródłaAkkan, Cagri K., Deniz Hür, Lokman Uzun i Bora Garipcan. "Amino acid conjugated self assembling molecules for enhancing surface wettability of fiber laser treated titanium surfaces". Applied Surface Science 366 (marzec 2016): 284–91. http://dx.doi.org/10.1016/j.apsusc.2016.01.083.
Pełny tekst źródłaFung, Shan-Yu, Hong Yang, Parisa Sadatmousavi, Yuebiao Sheng, Tewodros Mamo, Reyhaneh Nazarian i P. Chen. "Amino Acid Pairing for De Novo Design of Self-Assembling Peptides and Their Drug Delivery Potential". Advanced Functional Materials 21, nr 13 (2.05.2011): 2456–64. http://dx.doi.org/10.1002/adfm.201002497.
Pełny tekst źródłaKoda, Yuta, i Yukio Nagasaki. "Newly Designed Cysteine-Based Self-Assembling Prodrugs for Sepsis Treatment". Pharmaceutics 15, nr 6 (20.06.2023): 1775. http://dx.doi.org/10.3390/pharmaceutics15061775.
Pełny tekst źródłaKoch, Franziska, Anne Wolff, Stephanie Mathes, Uwe Pieles, Sina Saxer, Bernd Kreikemeyer i Kirsten Peters. "Amino acid composition of nanofibrillar self-assembling peptide hydrogels affects responses of periodontal tissue cells in vitro". International Journal of Nanomedicine Volume 13 (październik 2018): 6717–33. http://dx.doi.org/10.2147/ijn.s173702.
Pełny tekst źródłaTaniguchi, Suguru, Noriko Watanabe, Takeru Nose i Iori Maeda. "Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues". Journal of Peptide Science 22, nr 1 (10.12.2015): 36–42. http://dx.doi.org/10.1002/psc.2837.
Pełny tekst źródłaSeoudi, Rania S., Annette Dowd, Mark Del Borgo, Ketav Kulkarni, Patrick Perlmutter, Marie-Isabel Aguilar i Adam Mechler. "Amino acid sequence controls the self-assembled superstructure morphology of N-acetylated tri-β3-peptides". Pure and Applied Chemistry 87, nr 9-10 (1.10.2015): 1021–28. http://dx.doi.org/10.1515/pac-2015-0108.
Pełny tekst źródłaCaplan, Michael R., Elissa M. Schwartzfarb, Shuguang Zhang, Roger D. Kamm i Douglas A. Lauffenburger. "Effects of systematic variation of amino acid sequence on the mechanical properties of a self-assembling, oligopeptide biomaterial". Journal of Biomaterials Science, Polymer Edition 13, nr 3 (styczeń 2002): 225–36. http://dx.doi.org/10.1163/156856202320176493.
Pełny tekst źródłaPacheco, Shaun, Takashi Kanou, Shan-Yu Fung, Kenny Chen, Daiyoon Lee, Xiaohui Bai, Shaf Keshavjee i Mingyao Liu. "Formulation of hydrophobic therapeutics with self-assembling peptide and amino acid: A new platform for intravenous drug delivery". Journal of Controlled Release 239 (październik 2016): 211–22. http://dx.doi.org/10.1016/j.jconrel.2016.08.038.
Pełny tekst źródłaCarter, Daniel C., Brenda Wright, W. Gray Jerome, John P. Rose i Ellen Wilson. "A Unique Protein Self-Assembling Nanoparticle with Significant Advantages in Vaccine Development and Production". Journal of Nanomaterials 2020 (4.01.2020): 1–10. http://dx.doi.org/10.1155/2020/4297937.
Pełny tekst źródłaŠimoliūnas, Eugenijus, Lidija Truncaitė, Rasa Rutkienė, Simona Povilonienė, Karolis Goda, Algirdas Kaupinis, Mindaugas Valius i Rolandas Meškys. "The Robust Self-Assembling Tubular Nanostructures Formed by gp053 from Phage vB_EcoM_FV3". Viruses 11, nr 1 (11.01.2019): 50. http://dx.doi.org/10.3390/v11010050.
Pełny tekst źródłaHong, Yooseong, Raymond L. Legge, S. Zhang i P. Chen. "Effect of Amino Acid Sequence and pH on Nanofiber Formation of Self-Assembling Peptides EAK16-II and EAK16-IV". Biomacromolecules 4, nr 5 (wrzesień 2003): 1433–42. http://dx.doi.org/10.1021/bm0341374.
Pełny tekst źródłaJeong, Woo-jin, Soo hyun Kwon i Yong-beom Lim. "Peptide Self-Assembly: Modular Self-Assembling Peptide Platform with a Tunable Thermoresponsiveness via a Single Amino Acid Substitution (Adv. Funct. Mater. 35/2018)". Advanced Functional Materials 28, nr 35 (sierpień 2018): 1870243. http://dx.doi.org/10.1002/adfm.201870243.
Pełny tekst źródłaLee, Aejin, McKensie L. Mason, Tao Lin, Shashi Bhushan Kumar, Devan Kowdley, Jacob H. Leung, Danah Muhanna i in. "Amino Acid Nanofibers Improve Glycemia and Confer Cognitive Therapeutic Efficacy to Bound Insulin". Pharmaceutics 14, nr 1 (29.12.2021): 81. http://dx.doi.org/10.3390/pharmaceutics14010081.
Pełny tekst źródłaMatsusaki, Michiya, Ken-ichiro Hiwatari, Mariko Higashi, Tatsuo Kaneko i Mitsuru Akashi. "Stably-dispersed and Surface-functional Bionanoparticles Prepared by Self-assembling Amphipathic Polymers of Hydrophilic Poly(γ-glutamic acid) Bearing Hydrophobic Amino Acids". Chemistry Letters 33, nr 4 (kwiecień 2004): 398–99. http://dx.doi.org/10.1246/cl.2004.398.
Pełny tekst źródłaMałuch, Izabela, Oktawian Stachurski, Paulina Kosikowska-Adamus, Marta Makowska, Marta Bauer, Dariusz Wyrzykowski, Aleksandra Hać i in. "Double-Headed Cationic Lipopeptides: An Emerging Class of Antimicrobials". International Journal of Molecular Sciences 21, nr 23 (25.11.2020): 8944. http://dx.doi.org/10.3390/ijms21238944.
Pełny tekst źródłaNiwa, T., Masayoshi Tanaka i Takatoshi Kinoshita. "Construction of Self-Organized Interface via Monodisperse Block Copolypeptide Amphiphile". Advanced Materials Research 11-12 (luty 2006): 635–38. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.635.
Pełny tekst źródłaPrice, Joshua L., W. Seth Horne i Samuel H. Gellman. "Structural Consequences of β-Amino Acid Preorganization in a Self-Assembling α/β-Peptide: Fundamental Studies of Foldameric Helix Bundles". Journal of the American Chemical Society 132, nr 35 (8.09.2010): 12378–87. http://dx.doi.org/10.1021/ja103543s.
Pełny tekst źródłaZhang, Huixi Violet, Frank Polzer, Michael J. Haider, Yu Tian, Jose A. Villegas, Kristi L. Kiick, Darrin J. Pochan i Jeffery G. Saven. "Computationally designed peptides for self-assembly of nanostructured lattices". Science Advances 2, nr 9 (wrzesień 2016): e1600307. http://dx.doi.org/10.1126/sciadv.1600307.
Pełny tekst źródłaIlyukhin, Andrey B., Pavel S. Koroteev i Vladimir M. Novotortsev. "Supramolecular interactions and self-assembling in adducts of cymantrenecarboxylic acid with amino derivatives of five- and six-membered heterocyclic N-bases". Journal of Molecular Structure 1187 (lipiec 2019): 38–49. http://dx.doi.org/10.1016/j.molstruc.2019.03.054.
Pełny tekst źródłaAbdelghafour, Mohamed M., Ágota Deák, Tamás Kiss, Mária Budai-Szűcs, Gábor Katona, Rita Ambrus, Bálint Lőrinczi i in. "Self-Assembling Injectable Hydrogel for Controlled Drug Delivery of Antimuscular Atrophy Drug Tilorone". Pharmaceutics 14, nr 12 (6.12.2022): 2723. http://dx.doi.org/10.3390/pharmaceutics14122723.
Pełny tekst źródłaTarvirdipour, Shabnam, Xinan Huang, Voichita Mihali, Cora-Ann Schoenenberger i Cornelia G. Palivan. "Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application". Molecules 25, nr 15 (31.07.2020): 3482. http://dx.doi.org/10.3390/molecules25153482.
Pełny tekst źródłaZahedi, Farhad, Akram Abouie Mehrizi, Soroush Sardari i Iran Alemzadeh. "Design and development of a self-assembling protein nanoparticle displaying PfHAP2 antigenic determinants recognized by natural acquired antibodies". PLOS ONE 17, nr 9 (12.09.2022): e0274275. http://dx.doi.org/10.1371/journal.pone.0274275.
Pełny tekst źródłaSouthern, Emily J., Valentin Besnard, Bastien Lahaye, Andy M. Tyrrell i Shuhei Miyashita. "Catalytic self-folding of 2D structures through cascading magnet reactions". Royal Society Open Science 6, nr 7 (lipiec 2019): 182128. http://dx.doi.org/10.1098/rsos.182128.
Pełny tekst źródłaProtopapa, Elisabeth, Lovisa Ringstad, Amalia Aggeli i Andrew Nelson. "Interaction of self-assembling β-sheet peptides with phospholipid monolayers: The effect of serine, threonine, glutamine and asparagine amino acid side chains". Electrochimica Acta 55, nr 9 (marzec 2010): 3368–75. http://dx.doi.org/10.1016/j.electacta.2010.01.023.
Pełny tekst źródła