Gotowa bibliografia na temat „Seismic signal effect”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Seismic signal effect”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Seismic signal effect"
Limberger, Fabian, Georg Rümpker, Michael Lindenfeld i Hagen Deckert. "The impact of seismic noise produced by wind turbines on seismic borehole measurements". Solid Earth 14, nr 8 (18.08.2023): 859–69. http://dx.doi.org/10.5194/se-14-859-2023.
Pełny tekst źródłaHowie, John A., i Ali Amini. "Numerical simulation of seismic cone signals". Canadian Geotechnical Journal 42, nr 2 (1.04.2005): 574–86. http://dx.doi.org/10.1139/t04-120.
Pełny tekst źródłaZhang, Xingli, Yan Chen, Ruisheng Jia i Xinming Lu. "Two-dimensional variational mode decomposition for seismic record denoising". Journal of Geophysics and Engineering 19, nr 3 (1.06.2022): 433–44. http://dx.doi.org/10.1093/jge/gxac032.
Pełny tekst źródłaLandrø, Martin. "The effect of noise generated by previous shots on seismic reflection data". GEOPHYSICS 73, nr 3 (maj 2008): Q9—Q17. http://dx.doi.org/10.1190/1.2894453.
Pełny tekst źródłaLi, Bo, Lixin Zhang, Qiling Zhang i Shengmei Yang. "An EEMD-Based Denoising Method for Seismic Signal of High Arch Dam Combining Wavelet with Singular Spectrum Analysis". Shock and Vibration 2019 (10.03.2019): 1–9. http://dx.doi.org/10.1155/2019/4937595.
Pełny tekst źródłaZheng, Gong Ming, Yuan Yuan Shen i Ling Ling Song. "Vibroseis Nonlinear Scanning Signal Simulation Analysis". Applied Mechanics and Materials 318 (maj 2013): 191–95. http://dx.doi.org/10.4028/www.scientific.net/amm.318.191.
Pełny tekst źródłaCai, Jianxian, Li Wang, Jiangshan Zheng, Zhijun Duan, Ling Li i Ning Chen. "Denoising Method for Seismic Co-Band Noise Based on a U-Net Network Combined with a Residual Dense Block". Applied Sciences 13, nr 3 (19.01.2023): 1324. http://dx.doi.org/10.3390/app13031324.
Pełny tekst źródłaJuarzan, Laode Ihksan. "ANALISIS SINYAL SEISMIK DAN SELF POTENTIAL (SP) DARI FENOMENA SEIMOELEKTRIK DI GUNUNG LUMPUR BLEDUG KUWU JAWA TENGAH". Jurnal Rekayasa Geofisika Indonesia 4, nr 01 (30.04.2022): 60. http://dx.doi.org/10.56099/jrgi.v4i01.27456.
Pełny tekst źródłaWu, Jing, Li Wu, Miao Sun, Ya-ni Lu i Yan-hua Han. "Application of Boundary Local Feature Scale Adaptive Matching Extension EMD Endpoint Effect Suppression Method in Blasting Seismic Wave Signal Processing". Shock and Vibration 2021 (13.08.2021): 1–9. http://dx.doi.org/10.1155/2021/2804539.
Pełny tekst źródłaZhao, Binghui, Liguo Han, Pan Zhang i Yuchen Yin. "Weak Signal Enhancement for Passive Seismic Data Reconstruction Based on Deep Learning". Remote Sensing 14, nr 21 (24.10.2022): 5318. http://dx.doi.org/10.3390/rs14215318.
Pełny tekst źródłaRozprawy doktorskie na temat "Seismic signal effect"
Kuehnert, Julian. "Simulation of High Frequency Seismic Waves generated by Rockfalls on Real Topography". Thesis, Université de Paris (2019-....), 2019. https://theses.md.univ-paris-diderot.fr/KUEHNERT_Julian_va2.pdf.
Pełny tekst źródłaRockfall hazard has to be evaluated and monitored in order to prevent loss of life and infrastructure. In this regard it is important to create event catalogs and understand rockfall dynamics. Seismic waves can help for this purpose as they carry valuable information of the event. They are generated when rockfalls impact the ground and can be used to detect, classify and locate events. Beyond that, rockfall properties such as their volume and their dynamic behavior can be inferred. Yet, high frequency seismic signals (>1Hz) are poorly understood. This is because they are associated to complex seismic sources which are spatially distributed and can rapidly vary over time. On top of this, high frequency seismic waves are prone to be scattered and diffracted due to interactions with soil heterogeneities or surface topography. This thesis takes an important step forward to enhance understanding of high frequency rockfall seismic signals by simulating seismic wave propagation on domains with realistic velocity profiles and 3D surface topographies using the Spectral Element Method (SEM). The influence of the topography on the seismic wave field is investigated. It is found that topography induced amplification is substantially different between deep sources and sources located at the surface. This is because surface waves generated by shallow sources are exposed to constant scattering and diffraction when traveling along the surface. The energy decay along the surface is investigated for different velocity models and equations are derived to back-calculate the total seismic energy radiated by the source. This is of interest as the rockfall seismic energy is related to the rockfall volume. In order to account for topography effects, a correction factor is proposed which can be introduced in the energy calculation. Observed seismic signals generated by rockfall at Dolomieu crater on Piton de la Fournaise volcano, La Réunion, are analyzed. Synthetic seismograms are used to identify and interpret observed signals generated by single impacts. The influence of topography on the waveforms is demonstrated and the sensitivity on source location as well as source direction is evaluated. Signal characteristics such as amplitudes and frequency content are explained based on Hertz contact theory. Additionally, inter-station spectral ratios computed from rockfall seismic signals are shown to be characteristic of the source position. Comparison with simulated spectral ratios suggest that they are dominated by the propagation along the topography rather than the mechanism of the source. Based on these findings, a method is proposed for the localization of rockfalls using simulated inter-station energy ratios. The method is applied to localize rockfalls at Dolomieu crater. The implementation of the method involves a sliding time window which allows a straightforward application on continuous seismic signals. The potential of the method to monitor rockfall activity in real-time is emphasized
Karthikeyan, E. "Studies of system identification and denoising for geophysical signals". Thesis, 2018. http://eprint.iitd.ac.in:80//handle/2074/7928.
Pełny tekst źródłaKsiążki na temat "Seismic signal effect"
Wiszniowski, Jan. Broadband seismic system: Effect of transfer band on detection and recording of seismic waves. Warszawa: Polish Academy of Sciences, Institute of Geophysics, 2000.
Znajdź pełny tekst źródłaCzęści książek na temat "Seismic signal effect"
Berrino, Giovanna, i Umberto Riccardi. "Far-field Gravity and Tilt Signals by Large Earthquakes: Real or Instrumental Effects?" W Geodetic and Geophysical Effects Associated with Seismic and Volcanic Hazards, 1379–97. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7897-5_6.
Pełny tekst źródłaVarotsos, Panayiotis A., Nicholas V. Sarlis i Efthimios S. Skordas. "Natural Time Investigation of the Effect of Significant Data Loss on Identifying Seismic Electric Signals". W Natural Time Analysis: The New View of Time, 237–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16449-1_5.
Pełny tekst źródłaHarada, Makoto, Katsumi Hattori i Nobuhiro Isezaki. "Signal Discrimination of External Geomagnetic Effects Using the Transfer Function Approach with Continuous Wavelet Transform". W Handbook of Geophysical Exploration: Seismic Exploration, 243–58. Elsevier, 2010. http://dx.doi.org/10.1016/s0950-1401(10)04019-x.
Pełny tekst źródłaErik Sjöberg, Lars, i Majid Abrehdary. "On Moho Determination by the Vening Meinesz-Moritz Technique". W Geodetic Sciences - Theory, Applications and Recent Developments [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97449.
Pełny tekst źródłaGarcía, Silvia, Paulina Trejo i Alberto García. "Intelligent VR-AR for Natural Disasters Management". W Augmented Reality [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99337.
Pełny tekst źródłaGiustiniani, Michela, i Umberta Tinivella. "Gas Hydrates in Antarctica". W Glaciers and Polar Environment [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94306.
Pełny tekst źródłaStreszczenia konferencji na temat "Seismic signal effect"
D. Stefania, L. "Effect of phase variations of the signal to noise ratio of seismic data/ seismic modelling". W 70th EAGE Conference and Exhibition - Workshops and Fieldtrips. European Association of Geoscientists & Engineers, 2008. http://dx.doi.org/10.3997/2214-4609.20148095.
Pełny tekst źródłaLei, Shao, Shen Fang, Linlin Xu, Chengzhi Jiang, Hongli Liu i Fuxiang Huang. "Signal Processing System for Seismic Exploration Based on Laser Doppler Effect". W 2006 8th international Conference on Signal Processing. IEEE, 2006. http://dx.doi.org/10.1109/icosp.2006.345496.
Pełny tekst źródłaParaschivoiu, C. "The Effect of Irregular Spacing on the Signal-to-noise Ratio of Deep Seismic Reflection Data". W 77th EAGE Conference and Exhibition 2015. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201412523.
Pełny tekst źródłaLi, Bing, i D. K. Vijay. "Study of the Effect of FRS and SAM on Pipe Seismic Stress Using Taguchi Method". W ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77020.
Pełny tekst źródłaLiang, Li, Pan Rong, Ren Guopeng i Zhu Xiuyun. "Research on Earthquake Acceleration Alarm of Nuclear Power Plant". W 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-64554.
Pełny tekst źródłaXiao, Xiu, Qingzi Zhu, Guanyi Wang, Shao-Wen Chen, Mamoru Ishii i Yajun Zhang. "Vibration Effects on Bubbly Flow Structure in an Annulus". W 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60735.
Pełny tekst źródłaTiwari, Pankaj Kumar, Debasis Priyadarshan Das, Parimal Arjun Patil, Prasanna Chidambaram, Prasanna Kumar Chandran, Raj Deo Tewari i M. Khaidhir Abdul Hamid. "4D Seismic in Subsurface CO2 Plume Monitoring – Why It Matters?" W SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206162-ms.
Pełny tekst źródłaMatsuoka, Taichi, Takuya Wada i Mizuki Katakura. "Vibration Suppression of Traffic Signal Pole by Generating Electrical Power". W ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97351.
Pełny tekst źródłaSilvestrov, Ilya, Emad Hemyari, Andrey Bakulin, Yi Luo, Ali Aldawood, Flavio Poletto, Yujin Liu, Yue Du, Anton Egorov i Pavel Golikov. "Processing of Seismic-While-Drilling Data from the DrillCAM System Acquired with Wireless Geophones, Top-Drive, and Downhole Vibrations Sensors". W SPE Middle East Oil & Gas Show and Conference. SPE, 2021. http://dx.doi.org/10.2118/204543-ms.
Pełny tekst źródłaSzu, Harold. "Neural network adaptive wavelet transform". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.fa3.
Pełny tekst źródłaRaporty organizacyjne na temat "Seismic signal effect"
Taylor, Oliver-Denzil, Amy Cunningham,, Robert Walker, Mihan McKenna, Kathryn Martin i Pamela Kinnebrew. The behaviour of near-surface soils through ultrasonic near-surface inundation testing. Engineer Research and Development Center (U.S.), wrzesień 2021. http://dx.doi.org/10.21079/11681/41826.
Pełny tekst źródła