Gotowa bibliografia na temat „Seismic loading of substructure”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Seismic loading of substructure”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Seismic loading of substructure"
Sayginer, O., R. di Filippo, A. Lecoq, A. Marino i O. S. Bursi. "Seismic Vulnerability Analysis of a Coupled Tank-Piping System by Means of Hybrid Simulation and Acoustic Emission". Experimental Techniques 44, nr 6 (1.09.2020): 807–19. http://dx.doi.org/10.1007/s40799-020-00396-3.
Pełny tekst źródłaHavlíček, Peter, i Július Šoltész. "Applicability of Commercial Software for Bridge Design with Consideration of Seismic Loading Effects". Solid State Phenomena 272 (luty 2018): 313–18. http://dx.doi.org/10.4028/www.scientific.net/ssp.272.313.
Pełny tekst źródłaCasolo, Siro, Siegfried Neumair, Maria A. Parisi i Vincenzo Petrini. "Analysis of Seismic Damage Patterns in Old Masonry Church Facades". Earthquake Spectra 16, nr 4 (listopad 2000): 757–73. http://dx.doi.org/10.1193/1.1586138.
Pełny tekst źródłaBelostotsky, Alexander M., Pavel A. Akimov i Dmitry D. Dmitriev. "ABOUT METHODS OF SEISMIC ANALYSIS OF UNDERGROUND STRUCTURES". International Journal for Computational Civil and Structural Engineering 14, nr 3 (28.09.2018): 14–25. http://dx.doi.org/10.22337/2587-9618-2018-14-3-14-25.
Pełny tekst źródłaJia, Hongxing, Shizhu Tian, Shuangjiang Li, Weiyi Wu i Xinjiang Cai. "Seismic application of multi-scale finite element model for hybrid simulation". International Journal of Structural Integrity 9, nr 4 (13.08.2018): 548–59. http://dx.doi.org/10.1108/ijsi-04-2017-0027.
Pełny tekst źródłaChang, Guang Ming, Guo Hua Xing i Bo Quan Liu. "Equivalent Ductility Damage Model for Seismic Response of RC Structures: Test and Verification". Advanced Materials Research 163-167 (grudzień 2010): 1714–18. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.1714.
Pełny tekst źródłaSkokandić, Dominik, Anđelko Vlašić, Marija Kušter Marić, Mladen Srbić i Ana Mandić Ivanković. "Seismic Assessment and Retrofitting of Existing Road Bridges: State of the Art Review". Materials 15, nr 7 (30.03.2022): 2523. http://dx.doi.org/10.3390/ma15072523.
Pełny tekst źródłaMadhuri, Seeram, SiteshSubhra Bera i Brajkishor Prasad. "Dynamic Analysis of Offshore Wind Turbine Supported by Jacket Substructure under Wind and Wave Loading". Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, nr 1 (19.12.2022): 1749–55. http://dx.doi.org/10.38208/acp.v1.714.
Pełny tekst źródłaYUAN, Yong, Hirokazu IEMURA, Akira IGARASHI, Tetsuhiko AOKI i Yoshihisa YAMAMOTO. "INVESTIGATION OF SEISMIC PERFORMANCE OF HIGH DAMPING RUBBER BEARINGS FOR ISOLATED BRIDGES USING REAL-TIME SUBSTRUCTURE HYBRID LOADING TEST METHOD". Doboku Gakkai Ronbunshuu A 63, nr 1 (2007): 265–76. http://dx.doi.org/10.2208/jsceja.63.265.
Pełny tekst źródłaHughes, Jake Edmond, Yeesock Kim, Jo Woon Chong i Changwon Kim. "Particle Swarm Optimization for Active Structural Control of Highway Bridges Subjected to Impact Loading". Shock and Vibration 2018 (14.08.2018): 1–12. http://dx.doi.org/10.1155/2018/4932870.
Pełny tekst źródłaRozprawy doktorskie na temat "Seismic loading of substructure"
Phansalkar, Nachiket S. "Seismic Substructure Design Workbook". University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1220554481.
Pełny tekst źródłaVelasco, Cesar A. Morales. "Substructure Synthesis Analysis and Hybrid Control Design for Buildings under Seismic Excitation". Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30367.
Pełny tekst źródłaPh. D.
Patty, Jill Kathleen. "Longitudinal seismic response of concrete substructure-to-steel superstructure integral bridge connections /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3061626.
Pełny tekst źródłaDow, Ryan A. (Ryan Andrew) 1977. "Performance of glass panels under seismic loading". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/84274.
Pełny tekst źródłaKim, Jubum. "Behavior of hybrid frames under seismic loading /". Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/10121.
Pełny tekst źródłaMohammed, Mohammed Gaber Elshamandy. "GFRP-reinforced concrete columns under simulated seismic loading". Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10242.
Pełny tekst źródłaL’acier et les matériaux à base de polymères renforcés de fibres (PRF) ont des caractéristiques physiques et mécaniques différentes. La résistance à la haute corrosion, le rapport résistance vs poids, la non-conductivité et la bonne résistance à la fatigue font des barres d’armature en PRF, un renforcement alternatif aux barres d’armature en acier, pour des structures dans des environnements agressifs. Cependant, les barres d’armature en PRF ont un bas module d’élasticité et une courbe contrainte-déformation sous forme linéaire. Ces caractéristiques soulèvent des problèmes d'applicabilité quant à l’utilisation de tels matériaux comme renforcement pour des structures situées en forte zone sismique. La principale exigence pour les éléments structuraux des structures soumises à des charges sismiques est la dissipation d'énergie sans perte de résistance connue sous le nom de ductilité. Dans les structures rigides de type cadre, on s'attend à ce que les colonnes soient les premiers éléments à dissiper l'énergie dans les structures soumises à ces charges. La présente étude traite de la faisabilité des colonnes en béton armé entièrement renforcées de barres d’armature en polymères renforcés de fibres de verre (PRFV), obtenant une résistance et un déplacement latéral raisonnable par rapport aux exigences spécifiées dans divers codes. Onze colonnes à grande échelle ont été fabriquées: deux colonnes renforcées de barres d'acier (comme spécimens de référence) et neuf colonnes renforcées entièrement de barres en PRFV. Les colonnes ont été testées jusqu’à la rupture sous une charge quasi-statique latérale cyclique inversée et soumises simultanément à une charge axiale de compression. Les colonnes ont une section carrée de 400 mm avec une portée de cisaillement de 1650 mm pour simuler une colonne de 3,7 m de hauteur dans un bâtiment typique avec le point d’inflexion situé à la mi-hauteur. Les paramètres testés sont : le taux d’armature longitudinal (0,63%, 0,95% et 2,14 %), l'espacement des étriers (80mm, 100mm, 150 mm), les différentes configurations (C1, C2, C3 et C4) et le niveau de charge axiale (20%, 30 % et 40%). Les résultats des essais montrent clairement que les colonnes en béton renforcées de PRFV et bien conçues peuvent atteindre des niveaux de déformation élevés sans réduction de résistance. Un niveau acceptable de dissipation d'énergie, par rapport aux colonnes en béton armé avec de l’armature en acier, est atteint par les colonnes en béton armé de PRFV. L'énergie dissipée des colonnes en béton armé de PRFV était respectivement de 75% et 70% des colonnes en acier à un rapport déplacement latéral de 2,5% et 4%. Un déplacement supérieur a été atteint par les colonnes en PRFV jusqu'à 10% sans perte significative de résistance. La capacité d’un déplacement supérieur et l’énergie dissipée acceptable permettent aux colonnes en PRFV de participer au moment résistant dans des régions sujettes à des activités sismiques. Les rapports des déplacements expérimentaux ultimes ont été comparés avec les rapports estimés en utilisant l’Équation de confinement du code CSA S806-12. À partir de la comparaison, il a été trouvé que l’Équation de confinement sous-estime les valeurs des rapports de déplacement, donc les rapports de déplacement expérimentaux étaient utilisés pour modifier la zone de renforcement transversal du code CSA S806-12. Le comportement hystérétique encourage à proposer une procédure de conception pour que les colonnes fassent partie des cadres rigides à ductilité modérée et résistant au moment. Cependant, l'élaboration de guides de conception dépend de la détermination des déformations élastiques et inélastiques et de l'évaluation du facteur de modification de la force sismique et de la longueur de la rotule plastique pour les colonnes en béton armé renforcées de PRFV. Les résultats expérimentaux des colonnes renforcées de PRFV étudiées ont été utilisés pour justifier la ligne directrice de conception, ce qui prouve l’efficacité des équations de conception proposées.
Gubbins, Julie. "Strut action in columns subjected to seismic loading". Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33971.
Pełny tekst źródłaThis research project studies the two shear transfer mechanisms (compression field and direct strut action) observed in the reinforced concrete members. The capacity and behaviour of each specimen was predicted using a sectional response program (Response 2000), a two-dimensional non-linear finite element program (FIELDS), and the strut and tie method. These predictions, and comparisons with the actual experimental results, are presented and discussed. Guidance is provided for determining suitable strut and tie models to model both the compressive field and direct strut action of such columns.
Wallace, J. L. "Behaviour of beam lap splices under seismic loading". Thesis, University of Canterbury. Civil Engineering, 1996. http://hdl.handle.net/10092/9638.
Pełny tekst źródłaKurc, Ozgur. "A Substructure Based Parallel Solution Framework for Solving Linear Structural Systems with Multiple Loading Conditions". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6923.
Pełny tekst źródłaLi, Alex C. (Alex Chung-Hsing) 1974. "Effect of seismic loading on steel moment resisting frames". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50061.
Pełny tekst źródłaIncludes bibliographical references (leaves 47-48).
In recent history, the use of Steel Moment Resisting Frames (SMRF) in many structural steel buildings has become popular among many engineers and designers. The use of these moment resisting frames allows for more open spaces between floors and columns than in buildings that use the more traditional braced frame construction. One of the critical aspects of the moment resisting frames is the connections between the beams and the columns. The Northridge earthquake near Los Angeles California in 1994 showed that the existing designs for SMRF connections were inadequate and unstable. As a result, new connection designs were needed for SMRF construction. This thesis will first discuss the causes for the failures of the SMRF connections that were discovered after the Northridge earthquake. Next, new performance and testing requirements for new connection designs will be examined. Lastly, one possible solution, the SidePlate connection system, will be analyzed.
by Alex C. Li.
M.Eng.
Książki na temat "Seismic loading of substructure"
Sen, Tapan K. Fundamentals of Seismic Loading on Structures. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470742341.
Pełny tekst źródłaSen, Tapan K. Fundamentals of seismic loading on structures. Chichester, West Sussex, U.K: Wiley, 2009.
Znajdź pełny tekst źródłaY, Cheng Franklin, i American Society of Civil Engineers. Structural Division., red. Stability under seismic loading: Proceedings of a session at Structures Congress '86. New York, NY: American Society of Civil Engineers, 1986.
Znajdź pełny tekst źródłaR, Bergmann, i Comité international pour l'étude et le développement de la construction tubulaire, red. Design guide for concrete filled hollow section columns under static and seismic loading. Köln: TÜV Rheinland, 1995.
Znajdź pełny tekst źródłaBlack, Cameron J. Viscous heating of fluid dampers under wind and seismic loading: Experimental studies, mathematical modeling and design formulae. Berkeley: Dept. of Civil and Environmental Engineering, University of California, 2005.
Znajdź pełny tekst źródłaBlack, Cameron J. Viscous heating of fluid dampers under wind and seismic loading: Experimental studies, mathematical modeling and design formulae. Berkeley: Dept. of Civil and Environmental Engineering, University of California, 2005.
Znajdź pełny tekst źródłaBlack, Cameron J. Viscous heating of fluid dampers under wind and seismic loading: Experimental studies, mathematical modeling and design formulae. Berkeley: Dept. of Civil and Environmental Engineering, University of California, 2005.
Znajdź pełny tekst źródłaTzenov, Ludmil. Seismic resistant design of irregular structures: Generalised method for determination of design seismic loading = Düzensiz yapıların deprem yüklerine göre hesabı : deprem yüklerinin belirlenmesi için genelleştirilmiş metod. Maslak, İstanbul: Turkish Earthquake Foundation, 2001.
Znajdź pełny tekst źródłabéton, Comité euro-international du, red. RC frames under earthquake loading: State of the art report. London, UK: T. Telford, 1996.
Znajdź pełny tekst źródłaACI, International Conference on Innovations in Design With Emphasis on Seismic Wind and Environmental Loading Quality Control and Innovations in Materials/Hot Weather Concreting (2002 Cancun Mexico). Innovations in design with emphasis on seismic, wind, and environmental loading, quality control and innovations in materials/hot weather concreting. Farmington Hills, Mich: American Concrete Institute, 2002.
Znajdź pełny tekst źródłaCzęści książek na temat "Seismic loading of substructure"
Hinzen, Klaus-G. "Seismic Loading". W Structural Dynamics with Applications in Earthquake and Wind Engineering, 97–151. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-57550-5_2.
Pełny tekst źródłaManohar, Sharad, i Suhasini Madhekar. "Substructure Design and Soil–Structure Coupling". W Seismic Design of RC Buildings, 301–47. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2319-1_8.
Pełny tekst źródłaHaldar, Achintya. "Structural Reliability Estimation for Seismic Loading". W Encyclopedia of Earthquake Engineering, 1–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36197-5_277-1.
Pełny tekst źródłaJia, Junbo. "Slope Stability Due to Seismic Loading". W Soil Dynamics and Foundation Modeling, 251–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40358-8_8.
Pełny tekst źródłaHaldar, Achintya. "Structural Reliability Estimation for Seismic Loading". W Encyclopedia of Earthquake Engineering, 3626–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35344-4_277.
Pełny tekst źródłaZhang, Chunwei, Zeshan Alam, Li Sun i Bijan Samali. "Experimental strategy and seismic loading program". W Seismic Performance of Asymmetric Building Structures, 29–55. Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003026556-3.
Pełny tekst źródłaLaora, Raffaele Di, i Emmanouil Rovithis. "Design of piles under seismic loading". W Analysis of Pile Foundations Subject to Static and Dynamic Loading, 269–300. London: CRC Press, 2021. http://dx.doi.org/10.1201/9780429354281-8.
Pełny tekst źródłaKarayannis, C. G., K. K. Sideris i C. M. Economou. "Response of repaired RC exterior joints under cyclic loading". W European Seismic Design Practice, 285–92. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203756492-44.
Pełny tekst źródłaSingh, Mulayam, Kasilingam Senthil i Shailja Bawa. "Response of Underground Tunnel Against Seismic Loading". W Lecture Notes in Civil Engineering, 1027–39. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12011-4_87.
Pełny tekst źródłaMateescu, G., i V. Gioncu. "Member response to strong pulse seismic loading". W Behaviour of Steel Structures in Seismic Areas, 55–62. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211198-9.
Pełny tekst źródłaStreszczenia konferencji na temat "Seismic loading of substructure"
Reza, Md Shahin, Oreste S. Bursi, Giuseppe Abbiati i Alessio Bonelli. "Pseudo-Dynamic Heterogeneous Testing With Dynamic Substructuring of a Piping System Under Earthquake Loading". W ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97441.
Pełny tekst źródłaLöhning, Thomas, Uffe Graaskov Ravn, Flemming Pedersen i Louis Westh Moe Christoffersen. "The 1915 Çanakkale Bridge – Concept Development of Substructure". W IABSE Symposium, Istanbul 2023: Long Span Bridges. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2023. http://dx.doi.org/10.2749/istanbul.2023.0126.
Pełny tekst źródłaAyoub, E. F., M. Youakim i P. Nady. "Simplified approach for the seismic analysis of precast girder bridges with gap". W IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/ghent.2021.1375.
Pełny tekst źródłaAyoub, E. F., M. Youakim i P. Nady. "Simplified approach for the seismic analysis of precast girder bridges with gap". W IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/ghent.2021.1375.
Pełny tekst źródłaLöhning, Thomas, Uffe Graaskov Ravn, Flemming Pedersen, Louis Westh i Moe Christoffersen. "The 1915 Çanakkale Bridge – Design and Construction of Substructure". W IABSE Symposium, Istanbul 2023: Long Span Bridges. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2023. http://dx.doi.org/10.2749/istanbul.2023.0575.
Pełny tekst źródłaStark, Timothy D., Thomas J. Dehlin, Soheil Nazarian, Hoda Azari, Deren Yuan i Carlton L. Ho. "Seismic Surface Wave Testing for Track Substructure Assessment". W 2014 Joint Rail Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/jrc2014-3776.
Pełny tekst źródłaAbramchuk, George, i Kristina Abramchuk. "Dynamic Measurements and Damage Detection in Substructure with Swimming Loading Functions". W AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-6337.
Pełny tekst źródłaThomassen, Paul E., i Jo̸rgen Krokstad. "A Simplified Approach to Wave Loading for Fatigue Damage Analysis of Monopiles". W ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20651.
Pełny tekst źródłaChen, Chao, Chun-Sheng Zhao i Qing-Jun Ding. "Dynamic Analysis of Composite Stator of Ultrasonic Motor Based on Substructure Interface Loading Theory". W 2006 IEEE International Conference on Robotics and Biomimetics. IEEE, 2006. http://dx.doi.org/10.1109/robio.2006.340198.
Pełny tekst źródłaKurc, O., i K. M. Will. "A Substructure Based Parallel Linear Solution Framework for Structural Systems Having Multiple Loading Cases". W International Conference on Computing in Civil Engineering 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40794(179)73.
Pełny tekst źródłaRaporty organizacyjne na temat "Seismic loading of substructure"
Asareh, M. A., i I. Prowell. Seismic Loading for FAST: May 2011 - August 2011. Office of Scientific and Technical Information (OSTI), sierpień 2012. http://dx.doi.org/10.2172/1050131.
Pełny tekst źródłaSampson, M. Seismic Loading for Short-Term Duration Exposures and Temporary Structures. Office of Scientific and Technical Information (OSTI), marzec 2022. http://dx.doi.org/10.2172/1860669.
Pełny tekst źródłaLin, L., i J. Adams. Lessons for the fragility of Canadian hydropower components under seismic loading. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/223055.
Pełny tekst źródłaGirrens, S. P., i C. R. Farrar. Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading. Office of Scientific and Technical Information (OSTI), lipiec 1991. http://dx.doi.org/10.2172/5528280.
Pełny tekst źródłaWu, Yingjie, Selim Gunay i Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/ytgv8834.
Pełny tekst źródłaZaslawsky, M., i W. N. Kennedy. The comparison of DYNA3D to approximate solutions for a partially- full waste storage tank subjected to seismic loading. Office of Scientific and Technical Information (OSTI), wrzesień 1992. http://dx.doi.org/10.2172/6689637.
Pełny tekst źródłaZaslawsky, M., i W. N. Kennedy. The comparison of DYNA3D to approximate solutions for a partially- full waste storage tank subjected to seismic loading. Office of Scientific and Technical Information (OSTI), wrzesień 1992. http://dx.doi.org/10.2172/10115206.
Pełny tekst źródłaSchiller, Brandon, Tara Hutchinson i Kelly Cobeen. Comparison of the Response of Small- and Large-Component Cripple Wall Specimens Tested under Simulated Seismic Loading (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/iyca1674.
Pełny tekst źródłaChauhan, Vinod. L52307 Remaining Strength of Corroded Pipe Under Secondary Biaxial Loading. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 2009. http://dx.doi.org/10.55274/r0010175.
Pełny tekst źródłaCobeen, Kelly, Vahid Mahdavifar, Tara Hutchinson, Brandon Schiller, David Welch, Grace Kang i Yousef Bozorgnia. Large-Component Seismic Testing for Existing and Retrofitted Single-Family Wood-Frame Dwellings (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/hxyx5257.
Pełny tekst źródła