Gotowa bibliografia na temat „Seismic forces”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Seismic forces”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Seismic forces"
Olmos, Bertha A., i Jose Manuel Roesset. "Seismic forces on piles". Structure and Infrastructure Engineering 9, nr 12 (grudzień 2013): 1283–98. http://dx.doi.org/10.1080/15732479.2012.688976.
Pełny tekst źródłaMcRae, Hamish. "Seismic forces of global change". Strategy & Leadership 24, nr 6 (marzec 1996): 6–11. http://dx.doi.org/10.1108/eb054569.
Pełny tekst źródłaBolotbek, T., K. M. Mirlanov, A. Y. Telin, E. S. Chukanov i A. T. Talgatov. "SPECTRAL METHODS FOR DETERMINING THE SEISMIC FORCES OF BUILDINGS". Herald of KSUCTA, №2, Part 1, 2022, nr 2-1-2022 (30.04.2022): 426–34. http://dx.doi.org/10.35803/1694-5298.2022.2.426-434.
Pełny tekst źródłaCheng, Yuan Bing, Hong Wei Du, Shi Yun Zhang i Liu Zhong Xu. "Seismic Design of R.C. Stairs in Masonry Structure". Advanced Materials Research 163-167 (grudzień 2010): 4133–37. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.4133.
Pełny tekst źródłaJaiswal, O. R., Durgesh C. Rai i Sudhir K. Jain. "Review of Seismic Codes on Liquid-Containing Tanks". Earthquake Spectra 23, nr 1 (luty 2007): 239–60. http://dx.doi.org/10.1193/1.2428341.
Pełny tekst źródłaAkhtar, Mohsin Aakib Shamim. "Dynamic Seismic Analysis of Multi Storey Buildings in Seismic Zone V". International Journal for Research in Applied Science and Engineering Technology 10, nr 2 (28.02.2022): 108–15. http://dx.doi.org/10.22214/ijraset.2022.40154.
Pełny tekst źródłaChin, C. Y., Claudia Kayser i Michael Pender. "Seismic earth forces against embedded retaining walls". Bulletin of the New Zealand Society for Earthquake Engineering 49, nr 2 (30.06.2016): 200–210. http://dx.doi.org/10.5459/bnzsee.49.2.200-210.
Pełny tekst źródłaBai, Bing, Ze Yu Wu i Xiao Shan Deng. "Longitudinal Seismic Forces of Long-Span Bridge". Advanced Materials Research 255-260 (maj 2011): 1134–37. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.1134.
Pełny tekst źródłaChernov, Yury T., i Jaafar Qbaily. "Evaluation of seismic forces under modified structural schemes in the process of vibrations". Structural Mechanics of Engineering Constructions and Buildings 17, nr 4 (15.12.2021): 391–403. http://dx.doi.org/10.22363/1815-5235-2021-17-4-391-403.
Pełny tekst źródłaRezaeian, Hooman, George Charles Clifton i James B. P. Lim. "Compatibility Forces in Floor Diaphragms of Steel Braced Multi-Story Buildings". Key Engineering Materials 763 (luty 2018): 310–19. http://dx.doi.org/10.4028/www.scientific.net/kem.763.310.
Pełny tekst źródłaRozprawy doktorskie na temat "Seismic forces"
Leaf, Timothy D. "Investigation of the vertical distribution of seismic forces in the static force and equivalent lateral force procedures for seismic design of multistory buildings /". Available to subscribers only, 2006. http://proquest.umi.com/pqdweb?did=1136093311&sid=1&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Pełny tekst źródłaNicknam, Ahmad. "Non-linear analysis of reinforced concrete structures subjected to transient forces". Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1432.
Pełny tekst źródłaGardiner, Debra Rachel. "Design Recommendations and Methods for Reinforced Concrete Floor Diaphragms Subjected to Seismic Forces". Thesis, University of Canterbury. Department of Civil and Natural Resources Engineering, 2011. http://hdl.handle.net/10092/6993.
Pełny tekst źródłaChiewanichakorn, Methee. "Stability of thin precast concrete wall panels subjected to gravity and seismic forces". Thesis, University of Canterbury. Civil Engineering, 1999. http://hdl.handle.net/10092/10450.
Pełny tekst źródłaHarrison, Stella, i Siri Nöjd. "Influence of Foundation Modelling on the Seismic Response of a Concrete Dam". Thesis, KTH, Betongbyggnad, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300448.
Pełny tekst źródłaDet är nödvändigt att säkerställa dammars säkerhet mot jordbävningar i design-processen eftersom ett dammbrott kan få katastrofala konsekvenser. Traditionellt används förenklade beräkningar där dammens strukturella respons beräknas med en berggrund där bergets massa är försummad. Den senaste tiden har flera nya analysmetoder tagits fram, som tar hänsyn till bergets massa och är modellerade med absorberande randvillkor och free-field forces. De nyare metoderna förväntas modellera de seismiska krafterna mer exakt för att optimera designen och minimera onödiga reparationer. Syftet med projektet var att undersöka inverkan från olika metoders sätt att beakta berggrunden vid seismiska analyser. Det utfördes genom att jämföra den etablerade masslösa metoden med två metoder som beaktar bergmassan och free-fieldforces; den analytiska metoden av Song et al. (2018) och Direct FE-metoden av Løkke (2018). Både effektiviteten i den seismiska vågutbredningssimuleringen och dammens strukturella respons var av intresse. Modelleringsmetoderna jämfördes genom att studera punkter på både dammen och berget. När enbart berggrunden studerades med den masslösa metoden så erhölls, som förväntat, god överenstämmelse med den ideala teoretiska hastigheten på bergsytan. De analytiska och Direct FE metoderna skiljde sig marginellt från det teoretiska värdet men gav fortfarande en korrekt hastighet på bergsytan. Vid analys av modeller med dam och reservoar inkluderade, gav metoderna som använde free-field forces ekvivalenta och realistiska strukturella responser. Den masslösa metoden däremot, överskattade kraftigt dammens respons och ansågs därför inte modelleradet verkliga beteendet hos dammen på ett korrekt sätt, trots modifieringar med ökad materialdämpning i betongen. Ett annat syfte var att analysera påverkan av modellering i 2D kontra 3D för att bestämma dammens dynamiska egenskaper, som egenfrekvenser och egenmoder. Dessa frekvensanalyser gjordes med hjälp av modeller som både beaktade och försummade bergets massa, och jämfördes med experimentella data. Den masslösa 3D-modellen visade sig vara den mest effektiva modelleringsmetoden för att erhållade dynamiska egenskaperna hos dammen. Det eftersom en 3D-modell var nödvändig för att studera hela dammens beteende och hantering av utdata var förenklad vid användning av den masslösa modellen.
Niraula, Manjil. "BEHAVIOR AND DESIGN OF THE CRITICAL MEMBER IN STRUCTURES WITH IN-PLANE DISCONTINUOUS BRACED FRAMES". OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2751.
Pełny tekst źródłaMichel, Kenan. "Distribution of Lateral Forces on Reinforced Masonry Bracing Elements Considering Inelastic Material Behavior - Deformation-Based Matrix Method -". Technische Universität Dresden, 2021. https://tud.qucosa.de/id/qucosa%3A75156.
Pełny tekst źródłaDiaz, Calderon Alvaro Emilio, i Ventocilla Brigitte Carolina Meniz. "Evaluación estructural de reservorios apoyados de concreto armado en Lima Metropolitana considerando la norma ACI 350-06 y las normativas peruanas". Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2019. http://hdl.handle.net/10757/626005.
Pełny tekst źródłaIn the present thesis has been carried out the structural assessment of five round ground concrete tanks, built between 1977 and 1997, and located in high seismic risk areas in Lima Metropolitana in moderately rigid soils, with the objective of demonstrating if these structures still preserve an adequate structural design base on the current standards and consequently, if they will be able to withstand a severe seismic event and, hence, continue with their service. In order to model and determine the response of the tanks, the Housner’s rigid equivalent model was used, obtaining this way the impulsive and convective masses, which were modeled in the software SAP2000 with the ACI 350.3-06 standard and the E.030 Peruvian standard. Regarding on the determination of the resistant forces, in order to carry out the corresponding structural evaluation, the Peruvian standard “Concreto Armado E.060” was utilized. With regard to the results of the verifications carried out, it was observed that the reservoirs under study do not maintain an adequate structural design in terms of the current seismic solicitations. These deficiencies are reflected in horizontal reinforcement deficit by shear force on the walls, minimum amount of vertical rebar by shear on the walls, reinforcement in the base of the wall by tangential bending moment, rebar required in the beam by radial tensile force, and rebar in the end of the dome by radial traction; so these structures, in the presence of a severe seismic event, are exposed to structural failures.
Tesis
Yzema, Fritz Alemagne. "États limites ultimes de cadres en acier isolés sismiquement avec des amortisseurs élastomères et des contreventements en chevrons". Mémoire, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/5347.
Pełny tekst źródłaManafpour, Alireza. "Force and displacement-based seismic design of RC buildings". Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398834.
Pełny tekst źródłaKsiążki na temat "Seismic forces"
Seismic and wind forces: Structural design examples. Country Club Hills, IL: International Code Council, 2012.
Znajdź pełny tekst źródłaAlan, Williams. Seismic and wind forces: Structural design examples. Country Club Hills, Ill: International Code Council, 2003.
Znajdź pełny tekst źródłaAlan, Williams. Seismic and wind forces: Structural design examples. Wyd. 3. Country Club Hills, Ill: International Code Council, 2007.
Znajdź pełny tekst źródłaEmerick, Shannon Anderson. Wood platform construction and its superior resistance to seismic forces. Pullman, Wash: International Marketing Program for Agricultural Commodities & Trade, College of Agriculture & Home Economics, Washington State University, 1992.
Znajdź pełny tekst źródłaV, Leyendecker Edgar, i Geological Survey (U.S.), red. USGS Spectral response maps and their relationship with seismic design forces in building codes. [Denver, CO]: U.S. Geological Survey, 1995.
Znajdź pełny tekst źródła1953-, Baradar Majid, red. Seismic design of building structures: A professional's introduction to earthquake forces and design details. Wyd. 8. Belmont, CA: Professional Publications, 2001.
Znajdź pełny tekst źródłaM, McMullin Kurt, red. Seismic design of building structures: A professional's introduction to earthquake forces and design details. Wyd. 9. Belmont, CA: Professional Publications, 2008.
Znajdź pełny tekst źródłaLindeburg, Michael R. Seismic design of building structures: A professional's introduction to earthquake forces and design details. Belmont, CA: Professional Publications, 2011.
Znajdź pełny tekst źródłaSeismic design of building structures: A professional's introduction to earthquake forces and design details. Wyd. 6. Belmont, CA: Professional Publications, 1994.
Znajdź pełny tekst źródłaR, Lindeburg Michael, red. Seismic design of building structures: A professional's introduction to earthquake forces and design details. Wyd. 5. Belmont, CA: Professional Publications, 1990.
Znajdź pełny tekst źródłaCzęści książek na temat "Seismic forces"
Charney, Finley A. "Diaphragm Forces". W Seismic Loads, 181–84. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch22.
Pełny tekst źródłaDaniel, C., G. Hemalatha, Ajita Magdalene, D. Tensing i S. Sundar Manoharan. "Magnetorheological Damper for Performance Enhancement Against Seismic Forces". W Facing the Challenges in Structural Engineering, 104–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61914-9_9.
Pełny tekst źródłaVarga, Péter, i Erik Grafarend. "Influence of Tidal Forces on the Triggering of Seismic Events". W Pageoph Topical Volumes, 55–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96277-1_6.
Pełny tekst źródłaJablonski, A. M., i J. H. Rainer. "Effect of seismic input on hydrodynamic forces acting on gravity dams". W Earthquake Engineering, redaktorzy Shamim A. Sheikh i S. M. Uzumeri, 157–64. Toronto: University of Toronto Press, 1991. http://dx.doi.org/10.3138/9781487583217-021.
Pełny tekst źródłaVyas, Dhananjay, Jithin P. Zachariah, Alla Kranthi Kumar i Ravi S. Jakka. "Role of Hydrodynamic Forces on the Seismic Response of a Dam". W Lecture Notes in Civil Engineering, 423–35. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1579-8_33.
Pełny tekst źródłaFroio, D., A. U. Bariletti, M. Eusebio, R. Previtali i E. Rizzi. "Direct Method for Dynamic Soil-Structure Interaction Based on Seismic Inertia Forces". W Lecture Notes in Civil Engineering, 807–20. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51085-5_45.
Pełny tekst źródłaAhmad, Faisal, Nikhil A. Jambhale i Tejas D. Doshi. "Investigate the Effect of Isolation System for RC Structure Under Seismic Forces". W Lecture Notes in Civil Engineering, 455–71. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3371-4_40.
Pełny tekst źródłaKakatkar, Varsha, Nikhil Jambhale, Veerendrakumar C. Khed i Shivanand Mendigeri. "Comparative Study on Position of Floating Column for RCC Multistorey Building Subjected to Seismic Forces". W Lecture Notes in Civil Engineering, 219–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12011-4_17.
Pełny tekst źródłaPanchal, Sanish, Kushang Prajapati i Suhasini M. Kulkarni. "Behavior of Single Pylon of Air Cooled Condenser Support Structure Under Seismic and Wind Forces". W Engineering Vibration, Communication and Information Processing, 87–97. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1642-5_8.
Pełny tekst źródłaKaloji, Amit A., Nikhil A. Jambhale i Tejas D. Doshi. "Investigate the Effect of Floating Column and Composite Transfer Beam Under the Influence of Seismic Forces". W Lecture Notes in Civil Engineering, 403–18. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3371-4_36.
Pełny tekst źródłaStreszczenia konferencji na temat "Seismic forces"
Kai, Satoru, i Akihito Otani. "Study on Dynamic Alternating Load on Piping Seismic Response". W ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45287.
Pełny tekst źródłaKastrati, Arbëresha. "Yu81 vs Eurocode in calculation of seismic forces". W University for Business and Technology International Conference. Pristina, Kosovo: University for Business and Technology, 2018. http://dx.doi.org/10.33107/ubt-ic.2018.77.
Pełny tekst źródłaZha, Jin-xing. "Lateral Spreading Forces on Bridge Piles". W Workshop on Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40822(184)7.
Pełny tekst źródłaOtani, Akihito, i Satoru Kai. "Study on Dynamic Response by Alternating and Static Load". W ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63363.
Pełny tekst źródłaKornfield, Laurence, i Patrick Buscovich. "Use of Garage Doors to Resist Lateral Forces". W ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41084(364)111.
Pełny tekst źródłaLin, Yongliang, Mengxi Zhang i Xinxing Li. "Evaluation of Seismic Displacement of Quay Walls for the Passive Case Under Earthquake and Tsunami". W ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20198.
Pełny tekst źródłaWei, Yu. "Loess Slope Stability Analysis under the Action of Seismic Forces". W 2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2015. http://dx.doi.org/10.1109/icicta.2015.135.
Pełny tekst źródłaMartin, Felix. "Is Roof Eave Blocking Required to Transmit Wind/Seismic Forces?" W Structures Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41171(401)54.
Pełny tekst źródłaAbdujabarov, Abdukhamid, Mashkhurbek Mekhmonov i Farkhod Eshonov. "Design for reducing seismic and vibrodynamic forces on the shore support". W 2021 ASIA-PACIFIC CONFERENCE ON APPLIED MATHEMATICS AND STATISTICS. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0089531.
Pełny tekst źródłaMin-Su Park, Youn-Ju Jeong i Young-Jun You. "Numerical analysis of an offshore platform with partial porous cylinders due to wave excitation forces and seismic forces". W OCEANS 2012. IEEE, 2012. http://dx.doi.org/10.1109/oceans.2012.6405135.
Pełny tekst źródłaRaporty organizacyjne na temat "Seismic forces"
Gunay, Selim, Fan Hu, Khalid Mosalam, Arpit Nema, Jose Restrepo, Adam Zsarnoczay i Jack Baker. Blind Prediction of Shaking Table Tests of a New Bridge Bent Design. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/svks9397.
Pełny tekst źródłaMichel, Kenan. Performance Based Seismic Design of Lateral Force Resisting System. University of California, San Diego, październik 2020. http://dx.doi.org/10.25368/2020.126.
Pełny tekst źródłaDecato, Stephen N., Donald G. Albert, Frank E. Perron, Carbee Jr. i David L. Short-Range Seismic and Acoustic Signature Measurements Through Forest. Fort Belvoir, VA: Defense Technical Information Center, maj 2005. http://dx.doi.org/10.21236/ada434934.
Pełny tekst źródłaSweeney, J., i P. Harben. OSI Passive Seismic Experiment at the Former Nevada Test Site. Office of Scientific and Technical Information (OSTI), listopad 2010. http://dx.doi.org/10.2172/1018759.
Pełny tekst źródłaHobbs, T. E., J. M. Journeay, A. S. Rao, L. Martins, P. LeSueur, M. Kolaj, M. Simionato i in. Scientific basis of Canada's first public national seismic risk model. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330927.
Pełny tekst źródłaKafka, A. L. Database Relations for Seismic Phases Reported by Stations in the Former Soviet Union. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1993. http://dx.doi.org/10.21236/ada274832.
Pełny tekst źródłaMadsen, Robert L., Thomas A. Castle i Benjamin W. Schafer. Seismic Design of Cold-Formed Steel Lateral Load-Resisting Systems: A Guide for Practicing Engineers. National Institute of Standards and Technology, sierpień 2016. http://dx.doi.org/10.6028/nist.gcr.16-917-38.
Pełny tekst źródłaSpeicher, Matthew S., Ivana Olivares i Benjamin W. Schafer. Seismic Evaluation of a 2-Story Cold-Formed Steel Framed Building using ASCE 41-17. National Institute of Standards and Technology, wrzesień 2020. http://dx.doi.org/10.6028/nist.tn.2116.
Pełny tekst źródłaWu, Yingjie, Selim Gunay i Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/ytgv8834.
Pełny tekst źródłaWozniakowska, P., D. W. Eaton, C. Deblonde, A. Mort i O. H. Ardakani. Identification of regional structural corridors in the Montney play using trend surface analysis combined with geophysical imaging, British Columbia and Alberta. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328850.
Pełny tekst źródła