Gotowa bibliografia na temat „SEISMIC FORCE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SEISMIC FORCE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SEISMIC FORCE"
Hawkins, Neil M., i S. K. Ghosh. "Seismic-Force-Resisting Systems". PCI Journal 45, nr 5 (1.09.2000): 34–45. http://dx.doi.org/10.15554/pcij.09012000.34.45.
Pełny tekst źródłaYan, Xian Li, Qing Ning Li, Chang Gao i Li Ying Wang. "Research on Dynamic Performance of Concrete-Filled Steel Tubular Trussed Arch Bridge under Earthquake". Advanced Materials Research 368-373 (październik 2011): 1222–26. http://dx.doi.org/10.4028/www.scientific.net/amr.368-373.1222.
Pełny tekst źródłaBai, Bing, Ze Yu Wu i Xiao Shan Deng. "Longitudinal Seismic Forces of Long-Span Bridge". Advanced Materials Research 255-260 (maj 2011): 1134–37. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.1134.
Pełny tekst źródłaAkhtar, Mohsin Aakib Shamim. "Dynamic Seismic Analysis of Multi Storey Buildings in Seismic Zone V". International Journal for Research in Applied Science and Engineering Technology 10, nr 2 (28.02.2022): 108–15. http://dx.doi.org/10.22214/ijraset.2022.40154.
Pełny tekst źródłaXu, Qiang, i Xing Jun Qi. "Analysis on Seismic Pounding of Curved Bridge". Applied Mechanics and Materials 90-93 (wrzesień 2011): 800–804. http://dx.doi.org/10.4028/www.scientific.net/amm.90-93.800.
Pełny tekst źródłaChen, Hong Kai, Hong Mei Tang, Ting Hu, Yi Hu i Xiao Ying He. "Study on Numerical Simulation for Failure Process of Girder Bridge under Seismic Influence". Advanced Materials Research 530 (czerwiec 2012): 122–29. http://dx.doi.org/10.4028/www.scientific.net/amr.530.122.
Pełny tekst źródłaPaultre, Patrick, Éric Lapointe, Sébastien Mousseau i Yannick Boivin. "On calculating equivalent static seismic forces in the 2005 National Building Code of Canada". Canadian Journal of Civil Engineering 38, nr 4 (kwiecień 2011): 476–81. http://dx.doi.org/10.1139/l11-021.
Pełny tekst źródłaLiang, Jia. "Response and Parameter Analysis of Reinforced Retaining Wall under Earthquake Loading". Applied Mechanics and Materials 268-270 (grudzień 2012): 702–5. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.702.
Pełny tekst źródłaHeidebrecht, A. C., i A. Rutenberg. "Evaluation of foundation tie requirements in seismic design". Canadian Journal of Civil Engineering 20, nr 1 (1.02.1993): 73–81. http://dx.doi.org/10.1139/l93-008.
Pełny tekst źródłaUstun, Ozgur, Omer Cihan Kivanc i Mert Safa Mokukcu. "A Linear Brushless Direct Current Motor Design Approach for Seismic Shake Tables". Applied Sciences 10, nr 21 (29.10.2020): 7618. http://dx.doi.org/10.3390/app10217618.
Pełny tekst źródłaRozprawy doktorskie na temat "SEISMIC FORCE"
Leaf, Timothy D. "Investigation of the vertical distribution of seismic forces in the static force and equivalent lateral force procedures for seismic design of multistory buildings /". Available to subscribers only, 2006. http://proquest.umi.com/pqdweb?did=1136093311&sid=1&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Pełny tekst źródłaManafpour, Alireza. "Force and displacement-based seismic design of RC buildings". Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398834.
Pełny tekst źródłaZERBIN, Matteo. "Force-Based Seismic Design of Dual System RC Structures". Doctoral thesis, Università degli studi di Ferrara, 2017. http://hdl.handle.net/11392/2488041.
Pełny tekst źródłaLa progettazione sismica di strutture è tipicamente basato su un approccio progettuale basato sulle forze. Nel corso degli anni, questo approccio ha dimostrato di essere robusto e facile da applicare dai progettisti e, in combinazione con il principio di gerarchia delle resistenze, fornisce una buona protezione contro i meccanismi di collasso fragili. Tuttavia, è anche noto che l'approccio di progettazione in forze così come attuato nell’odierna generazione di normative soffre di alcune carenze. Uno di questi riguarda il fatto che il tagliante alla base è calcolato utilizzando un fattore di struttura predefinito, cioè costante per tipo di sistema strutturale. Di conseguenza, per lo stesso input di progettazione, strutture dello stesso tipo ma diversa geometria sono sottoposti ad una diversa domanda di duttilità e mostrano quindi una diversa prestazione durante un evento sismico. L'obiettivo di questo studio è quello di presentare un approccio per il calcolo fattori di struttura utilizzando modelli analitici semplici. Questi modelli analitici descrivono la deformata a snervamento e spostamento ultimo della struttura e richiedono solo dati di input disponibili all’inizio del processo di progettazione, quali dati geometrici e proprietà dei materiali. La deformata della struttura ottenuta dalle dimensioni delle sezioni e la capacità in termini di duttilità sezionale possono essere stimati all'inizio della progettazione. La duttilità è alla base della formulazione del fattore di struttura come proposto dai modelli analitici presentati. Tali modelli analitici permettono di collegare le duttilità sezionali alla duttilità strutturale e quindi calcolare una stima del fattore di struttura per struttura a pareti e a telaio. Infine, si sviluppa un approccio per strutture duali di tipo telaio-parete come combinazione di risultati ottenuti per i sistemi singoli. Il metodo proposto è applicato ad un insieme di strutture duali e validato con analisi dinamiche non lineari. Si dimostra che il metodo proposto produce una più accurata prestazione sismica rispetto all'approccio progettuale delle normative odierne. Il lavoro presentato contribuisce pertanto allo sviluppo di nuove linee guida per la progettazione sismica nella prossima generazione di normative.
Hague, Samuel Dalton. "Eccentrically braced steel frames as a seismic force resisting system". Kansas State University, 2013. http://hdl.handle.net/2097/15610.
Pełny tekst źródłaDepartment of Architectural Engineering
Kimberly Waggle Kramer
Braced frames are a common seismic lateral force resisting system used in steel structure. Eccentrically braced frames (EBFs) are a relatively new lateral force resisting system developed to resist seismic events in a predictable manner. Properly designed and detailed EBFs behave in a ductile manner through shear or flexural yielding of a link element. The link is created through brace eccentricity with either the column centerlines or the beam midpoint. The ductile yielding produces wide, balanced hysteresis loops, indicating excellent energy dissipation, which is required for high seismic events. This report explains the underlying research of the behavior of EBFs and details the seismic specification used in design. The design process of an EBF is described in detail with design calculations for a 2- and 5-story structure. The design process is from the AISC 341-10 Seismic Provisions for Structural Steel Buildings with the gravity and lateral loads calculated according to ASCE 7-10 Minimum Design Loads for Buildings and Other Structures. Seismic loads are calculated using the Equivalent Lateral Force Procedure. The final member sizes of the 2-story EBF are compared to the results of a study by Eric Grusenmeyer (2012). The results of the parametric study are discussed in detail.
Fuqua, Brandon W. "Buckling restrained braced frames as a seismic force resisting system". Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1131.
Pełny tekst źródłaLi, Xinrong. "Reinforced concrete columns under seismic lateral force and varying axial load". Thesis, University of Canterbury. Civil Engineering, 1994. http://hdl.handle.net/10092/7593.
Pełny tekst źródłaMurphy, Michael. "Performance based evaluation of prequalified steel seismic force resisting structures in Canada". Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43701.
Pełny tekst źródłaStallbaumer, Cassandra. "Design comparison of hybrid masonry types for seismic lateral force resistance for low-rise buildings". Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/32534.
Pełny tekst źródłaArchitectural Engineering and Construction Science
Kimberly W. Kramer
The term hybrid masonry describes three variations of a lateral force resisting system that utilizes masonry panels inside steel framing to resist lateral loads from wind or earthquakes. The system originates from the rich history of masonry in the construction industry and is currently used in low-rise, low-seismic, wind-governed locations within the United States. Considerable research is focused on hybrid systems to prove their validity in high-seismic applications. The three variations of hybrid masonry are known by number. Type I hybrid masonry utilizes the masonry panel as a non-load-bearing masonry shear wall. Shear loads from the diaphragm are transferred into the beam, through metal plates, and over an air gap to the top of the masonry panel. The masonry panel transfers the shear to the beam below the panel using compression at the toe of the wall and tension through the reinforcement that is welded to the beam supporting the masonry. Steel framing in this system is designed to resist all gravity loads and effects from the shear wall. Type II hybrid masonry utilizes the masonry as a load-bearing masonry shear wall. The masonry wall, which is constructed from the ground up, supports the floor live loads and dead load of the wall, as well as the lateral seismic load. Shear is transferred from the diaphragm to the steel beam and into the attached masonry panel via shear studs. The masonry panel transfers the seismic load using compression at the toe and opposite corner of the panel. Type III hybrid masonry also utilizes the masonry panel as a load-bearing masonry shear wall, but the load transfer mechanisms are more complicated since the panel is attached to the surrounding steel framing on all four sides of the panel. This study created standard building designs for hybrid systems and a standard moment frame system with masonry infill in order to evaluate the validity of Type I and II hybrid masonry. The hybrid systems were compared to the standard of a moment frame system based on constructability, design, and economics.
Bakr, Junied. "Displacement-based approach for seismic stability of retaining structures". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/displacementbased-approach-for-seismic-stability-of-retaining-structures(fed35f6a-9a0d-46ae-8607-1dc434dc7c28).html.
Pełny tekst źródłaLowe, Joshua Brian. "Quantifying Seismic Risk for Portable Ground Support Equipment at Vandenberg Air Force Base". DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/269.
Pełny tekst źródłaKsiążki na temat "SEISMIC FORCE"
Oregon. State Interagency Seismic Safety Task Force. Report to Governor Neil Goldschmidt from the State Interagency Seismic Safety Task Force. Salem, Or: The Division, 1990.
Znajdź pełny tekst źródłaY, Cheng Franklin, red. Seismic design aids for nonlinear pushover analysis of reinforced concrete and steel bridges. Boca Raton, FL: CRC Press, 2012.
Znajdź pełny tekst źródłaSeismic and wind forces: Structural design examples. Country Club Hills, IL: International Code Council, 2012.
Znajdź pełny tekst źródłaAlan, Williams. Seismic and wind forces: Structural design examples. Country Club Hills, Ill: International Code Council, 2003.
Znajdź pełny tekst źródłaAlan, Williams. Seismic and wind forces: Structural design examples. Wyd. 3. Country Club Hills, Ill: International Code Council, 2007.
Znajdź pełny tekst źródłaEmerick, Shannon Anderson. Wood platform construction and its superior resistance to seismic forces. Pullman, Wash: International Marketing Program for Agricultural Commodities & Trade, College of Agriculture & Home Economics, Washington State University, 1992.
Znajdź pełny tekst źródłaMoseley, V. J. "Jon", Andreas Lampropoulos, Eftychia Apostolidi i Christos Giarlelis. Characteristic Seismic Failures of Buildings. Redaktor Stephanos E. Dritsos. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/sed016.
Pełny tekst źródłaV, Leyendecker Edgar, i Geological Survey (U.S.), red. USGS Spectral response maps and their relationship with seismic design forces in building codes. [Denver, CO]: U.S. Geological Survey, 1995.
Znajdź pełny tekst źródła1953-, Baradar Majid, red. Seismic design of building structures: A professional's introduction to earthquake forces and design details. Wyd. 8. Belmont, CA: Professional Publications, 2001.
Znajdź pełny tekst źródłaM, McMullin Kurt, red. Seismic design of building structures: A professional's introduction to earthquake forces and design details. Wyd. 9. Belmont, CA: Professional Publications, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "SEISMIC FORCE"
Charney, Finley A. "Equivalent Lateral Force Analysis". W Seismic Loads, 123–34. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch18.
Pełny tekst źródłaDi Julio, Roger M. "Static Lateral-Force Procedures". W The Seismic Design Handbook, 119–41. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-9753-7_4.
Pełny tekst źródłaTowhata, Ikuo. "Application of Seismic Inertia Force". W Springer Series in Geomechanics and Geoengineering, 235–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-35783-4_12.
Pełny tekst źródłaTowhata, Ikuo. "Seismic Force Exerted on Structures". W Springer Series in Geomechanics and Geoengineering, 251–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-35783-4_13.
Pełny tekst źródłaDi Julio, Roger M. "Linear Static Seismic Lateral Force Procedures". W The Seismic Design Handbook, 247–73. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1693-4_5.
Pełny tekst źródłaPapagiannopoulos, George A., George D. Hatzigeorgiou i Dimitri E. Beskos. "Hybrid Force-Displacement Design". W Seismic Design Methods for Steel Building Structures, 153–93. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80687-3_5.
Pełny tekst źródłaPapagiannopoulos, George A., George D. Hatzigeorgiou i Dimitri E. Beskos. "Force-Based Design of EC8". W Seismic Design Methods for Steel Building Structures, 59–112. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80687-3_3.
Pełny tekst źródłaDriver, R. G., D. J. L. Kennedy i G. L. Kulak. "Establishing seismic force reduction factors for steel structures". W Behaviour of Steel Structures in Seismic Areas, 487–94. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211198-67.
Pełny tekst źródłaTso, W. K., i N. Naumoski. "Evaluation of NBCC 1990 seismic force reduction factors". W Earthquake Engineering, redaktorzy Shamim A. Sheikh i S. M. Uzumeri, 751–58. Toronto: University of Toronto Press, 1991. http://dx.doi.org/10.3138/9781487583217-095.
Pełny tekst źródłaZhao, Fei, Shaoyu Zhao i Shuli Fan. "Effect of Autoclaved Aerated Concrete on Dynamic Response of Concrete Gravity Dam Under Earthquakes". W Lecture Notes in Civil Engineering, 409–26. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2532-2_35.
Pełny tekst źródłaStreszczenia konferencji na temat "SEISMIC FORCE"
Phillips, T. F. "Quality Control of Seismic Vibrator Output Force". W EAGE workshop on Developments in Land Seismic Acquisition for Exploration. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609-pdb.159.e02.
Pełny tekst źródła"Formulation of a Conceptual Seismic Code". W SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/1006.
Pełny tekst źródłaZhang, Xiaozhe, i Franklin Y. Cheng. "Control Force Estimation in Seismic Building Design". W Structures Congress 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41130(369)137.
Pełny tekst źródłaKai, Satoru, i Akihito Otani. "Study on Dynamic Alternating Load on Piping Seismic Response". W ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45287.
Pełny tekst źródła"Elongation in Ductile Seismic-Resistant Reinforced Concrete Frames". W SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/982.
Pełny tekst źródła"Seismic Design of Frame Buildings: a European Perspective". W SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/1005.
Pełny tekst źródłaOtani, Akihito, i Satoru Kai. "Study on Dynamic Response by Alternating and Static Load". W ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63363.
Pełny tekst źródła"Studies on the Seismic Response of Waffle-Flat Plate Buildings". W SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/987.
Pełny tekst źródła"Seismic Retrofit of Beam-to-Column Joints with Grouted Steel Tubes". W SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/986.
Pełny tekst źródła"Development of Canadian Seismic-Resistant Design Code for Reinforced Concrete Buildings". W SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/1008.
Pełny tekst źródłaRaporty organizacyjne na temat "SEISMIC FORCE"
Michel, Kenan. Performance Based Seismic Design of Lateral Force Resisting System. University of California, San Diego, październik 2020. http://dx.doi.org/10.25368/2020.126.
Pełny tekst źródłaWu, Yingjie, Selim Gunay i Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/ytgv8834.
Pełny tekst źródłaGunay, Selim, Fan Hu, Khalid Mosalam, Arpit Nema, Jose Restrepo, Adam Zsarnoczay i Jack Baker. Blind Prediction of Shaking Table Tests of a New Bridge Bent Design. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/svks9397.
Pełny tekst źródłaSEISMIC RESILIENCE ASSESSMENT OF A SINGLE-LAYER RETICULATED DOME DURING CONSTRUCTION. The Hong Kong Institute of Steel Construction, sierpień 2022. http://dx.doi.org/10.18057/icass2020.p.353.
Pełny tekst źródłaSEISMIC RESILIENCE ASSESSMENT OF A SINGLE-LAYER RETICULATED DOME DURING CONSTRUCTION. The Hong Kong Institute of Steel Construction, marzec 2023. http://dx.doi.org/10.18057/ijasc.2023.19.1.10.
Pełny tekst źródłaSEISMIC BEHAVIOR OF BUCKLING RESTRAINED BRACE WITH FULL-LENGTH OUTER RESTRAINT: EXPERIMENT AND RESTORING FORCE MODEL. The Hong Kong Institute of Steel Construction, wrzesień 2023. http://dx.doi.org/10.18057/ijasc.2023.19.3.1.
Pełny tekst źródłaSEISMIC PERFORMANCE OF SINGLE-LAYER SPHERICAL RETICULATED SHELLS CONSIDERING JOINT STIFFNESS AND BEARING CAPACITY. The Hong Kong Institute of Steel Construction, czerwiec 2022. http://dx.doi.org/10.18057/ijasc.2022.18.2.9.
Pełny tekst źródłaENERGY DISSIPATION OF STEEL-CONCRETE COMPOSITE BEAMS SUBJECTED TO VERTICAL CYCLIC LOADING. The Hong Kong Institute of Steel Construction, wrzesień 2022. http://dx.doi.org/10.18057/ijasc.2022.18.3.3.
Pełny tekst źródłaSTUDY ON SEISMIC BEHAVIOR OF TRAPEZOIDAL CORRUGATED STEEL PLATE SHEAR WALL STRUCTURE WITH PEC COLUMN. The Hong Kong Institute of Steel Construction, czerwiec 2023. http://dx.doi.org/10.18057/ijasc.2023.19.2.8.
Pełny tekst źródłaSEISMIC DESIGN AND ANALYSIS OF STEEL PANEL DAMPERS FOR STEEL FRAME BUILDINGS (ICASS’2020). The Hong Kong Institute of Steel Construction, sierpień 2022. http://dx.doi.org/10.18057/icass2020.p.k09.
Pełny tekst źródła